

1. Preface
2. Getting Started with Xcode 8 Development
3. Swift Playgrounds
4. Build Your First App
5. Hello World App Explained
6. Introduction to Auto Layout
7. Designing UI Using Stack Views
8. Introduction to Prototyping
9. Creating a Simple Table-based App

10. Customize Table Views Using Prototype Cell
11. Interacting with Table View and Using UIAlertController
12. Table Row Deletion, Custom Action Button and MVC
13. Introduction to Navigation Controller and Segue
14. Introduction to Object-Oriented Programming
15. Detail View Enhancement and Navigation Bar Customization
16. Self Sizing Cells and Dynamic Type
17. Basic Animations, Visual Effects and Unwind Segues
18. Working with Maps
19. Introduction to Static Table Views, UIImagePickerController and NSLayoutConstraint
20. Working with Core Data
21. Search Bar and UISearchController
22. Building Walkthrough Screens with UIPageViewController
23. Exploring Tab Bars and Storyboard References
24. Getting Started with WKWebView and SFSafariViewController
25. Exploring CloudKit
26. Localizing Your App to Reach More Users
27. Deploying and Testing Your App on a Real iOS Device
28. Beta Testing with TestFlight
29. Submitting Your App to App Store
30. Adopting 3D Touch

Table of Contents

2

31. Developing User Notifications in iOS 10
32. Appendix - Swift Basics

3

Copyright ©2016 by AppCoda Limited

All right reserved. No part of this book may be used or reproduced, stored or transmitted in
any manner whatsoever without written permission from the publisher.

Published by AppCoda Limited

4

In June 2014, Apple brought us Swift, a brand new programming language for iOS, macOS,
watchOS and tvOS. Fast forward to today, the company already released version 3.0 of the
programming language with more features. With over two years of development since its first
release, I would not consider Swift as a brand new programming language. Swift is now
solidified, more mature and ready for any application development on Apple platforms. If
you're planning to create your next iOS app or begin to learn iOS development, Swift is for sure
the programming language to check out.

In this book, I will give you an introduction to Swift 3, discuss some of the new features in iOS
10, and most importantly, show you how to build a real world app from scratch in Swift.

As an absolute beginner, you may question if you could learn Swift programming and build a
real iOS app.

I have been programming in Swift since it was first announced. Swift is more approachable
and it is a lot easier for newbie to learn than Objective-C. Not everyone can become a great
developer, but I believe everyone can learn programming and develop an app in Swift. All you
need is hard work, determination, and the willingness to take actions.

I launched AppCoda about four years ago and started to publish iOS programming tutorials on
weekly basis. Since then, I have published several books on iOS app development. At first, I
thought people, who want to learn app development, are those with programming experience
and technical background. What's interesting is that people from different backgrounds are
passionate to build their own apps. I have a reader from France, who is a surgeon by
profession, started from zero programming experience to launching his first app, which allows
anyone to share and advertise event information for free. Another reader is a pilot by
profession. He began to learn iOS programming a couple years ago and is now building iPhone
apps for his own use and other pilots. Boozy is an app for finding Happy Hours, Daily Deals
and Brunches. It was built by a law school dropout. The creator of the app could not find a
good place for a drink in DC area. So she decided to make an app to meet a real need. Similarly
she did not know coding when she came up with the idea. She just got started and learned

Preface

5

along the way.

From time to time, I got emails from people who want to create an app. The emails usually
mention something like this: "I have an app idea. Where do I begin? But I have no
programming skills. Can I learn from scratch to make one?"

What I learned from these truly inspring stories is that you don't need to have a degree in
Computer Science or Engineering in order to build an app. These readers have one thing in
common. They are committed to take actions. They all put their hard work in to make things
happen. This is what you need.

So you've got an idea to build an app? I believe you can make one on your own. Remember
there is nothing to deter you from learning and get things done if you're really passionate
about it. Let me borrow one of my favorite quotes from Last Lecture to conclude:

Brick walls are there for a reason: they let us prove how badly we want things.

- Randy Pausch

Lastly, thanks for picking up the book. I hope you will enjoy reading it and launch your first
iOS app on App Store. If you'd like to share the story of your first app, drop me an email at
simonng@appcoda.com. I would love to hear from you.

Simon Ng Founder of AppCoda

I know many readers have an app idea but don't know where to begin. Hence, this new book is
written with this in mind. It covers the whole aspect of Swift programming and you will learn
how to build a real world app from scratch. You'll first learn the basics of Swift, then prototype
an app, and later add some features to it in each chapter. After going through the whole book,
you'll have a real app. During the process, you will learn how to exhibit data in table view,
customize the look & feel of a cell, design UI using Stack Views, create animations, work on
maps, build an adaptive UI, save data in local database, upload data to iCloud, use TestFlight
to arrange beta test, etc.

What You Will Learn in This Book

6

This new book features a lot of hands-on exercises and projects. You will get the opportunities
to write code, fix bugs and test your app. Although it involves a lot of work, it will be a
rewarding experience. I believe it will allow you to master Swift 3, Xcode 8, and iOS 10
programming. Most importantly, you will be able to develop an app and release it on App
Store.

This book is written for beginners without any prior programming experience and those who
want to learn Swift programming. Whether you are a programmer who wants to learn a new
programming language or a designer who wants to turn your design into an iOS app or an
entrepreneur who wants to learn to code, this book is written for you.

I just assume you are comfortable using Mac OS X and iOS as a user.

I have been asked by some of my blog readers about the best way to start learning iOS
programming. These are some of the learning tips I shared on my blog and I expect these tips
will be useful to you too.

1. As always, get your hands dirty. I emphasized this technique at the very beginning
when I wrote my first book. You can't learn programming just by reading. You need to
take action and write some code. Fire up Xcode, play around with Swift and follow the first
few chapters to build your first app. Try your best to understand how the Hello World app
works before moving on to the next chapter. If you are able to manage the basics, it will be
much easier for you to understand the rest of the materials.

2. Bugs are your friends when learning programming. From time to time, you'll hit
bugs or errors. You probably want to email me and say the sample app doesn't work. How
can I get the bug fixed? Questions are always welcome and I love to help you learn
programming. However, I encourage you to attempt to figure out the solutions by yourself
first. You may go over the code again and again. Or search the web (stackoverflow.com in
particular) for solutions. Just try your best to solve the problem before asking. Like every
programmer, I hate bugs especially when facing a project deadline. However it's always

Audience

Learning Tips

7

the bugs that help me improve my programming skills.

If you do not have any programming experience, one useful hint for you is that Swift is a
case-sensitive language. That means a variable named 'message' is different from that
named 'Message'. This is one of the most common errors and frequently asked questions.

3. "The best way to learn is to teach" is an old saying. It still works in the modern
world, however. You don't need to be an expert to teach. I'm not talking about giving a
lecture in a university or teaching a bunch of students in a formal class. Teaching does not
always happen that way. It can be as simple as sharing your knowledge with a colleague or
a classmate sitting next to you. When you learn something new, try to explain the
materials to someone else. For example, after building the HelloWorld app, teach your
close friend how it works and how he/she can create an app too. When you become more
knowledgeable with the programming language and materials, you may arrange an
interest group and share what you've learnt to a larger group of people.

This is one of the most effective ways of learning as I learn so much while publishing
tutorials on appcoda.com, as well as, developing my first book.

Sometimes you think you know the materials well. But once you need to explain the
concept to someone else and answer questions, you may find that you didn't understand
the material thoroughly. And this makes you study the materials even harder. Give this
method a shot while you learn iOS programming.

4. It takes time to become a great programmer. Be patient. The materials in this book
are not magical. You will learn the basics of iOS programming and how to build your own
apps. That said, it takes time and lots of practices to become a competent programmer.
Don't set your expectations too high for your first app. Just create something simple and
fun.

5. I know money matters. Some of the people begin learning app development just
because of money. There is nothing wrong with that. You may want to build your app
business to earn some side income and eventually turn it into a full time business. That's
completely understandable. Who doesn't want to live a rich life? However, if money is
your primary reason for building apps, you'll be easily discouraged when you hit bugs or
errors. And then you give up. Programming is challenging. I find people who successfully

8

master the language are those who have a strong desire to build apps and are enthusiastic
to learn programming. They have an idea in their mind and want to turn it into a real app.
Making money is not their number one concern. They know the app can solve their own
problems and will be beneficial to others. With such a powerful purpose in mind, they can
overcome any obstacles come up. So think again why you want to learn programming.

9

So you want to create your own app? That's great! Creating an app is a fun and rewarding
experience. But before we begin to dive into iOS programming, let's go through the tools you
need to build an app.

First, you need a Mac. It's the basic requirement for iOS development. To develop an iPhone
(or iPad) app, you need to get a Mac with an Intel-based processor running on Mac OS X
version 10.10 (or later). If you now own a PC, the cheapest option is to purchase the Mac Mini.

Chapter 1
Getting Started with Xcode 8
Development

1. Get a Mac

10

As of this writing, the retail price of the entry model is US$499. You can hook it up with the
monitor of your PC. The basic model of Mac mini comes with a 1.4GHz dual-core Intel Core i5
processor and 4GB memory. It should be good enough to run the iOS development tools
smoothly. Of course, if you have a bigger budget, get the higher model or an iMac with better
processing power.

You will need an Apple ID to download Xcode, access iOS SDK documentation, and other
technical resources. Most importantly, it will allow you to deploy your app to a real
iPhone/iPad for testing.

If you have downloaded an app from the App Store, it is quite sure that you already own an
Apple ID. In case you haven't created your Apple ID before, you have to get one. Simply go to
Apple's website (https://appleid.apple.com/account) and follow the procedures for
registration.

To start developing iOS apps, Xcode is the only tool you need to download. Xcode is an
integrated development environment (IDE) provided by Apple. Xcode provides everything you
need to kick start your app development. It already bundles the latest version of the iOS SDK
(short for Software Development Kit), a built-in source code editor, graphic user interface (UI)
editor, debugging tools and many more. Most importantly, Xcode comes with an iPhone (and
iPad) simulator so you can test your app without the real devices.

You have two ways to install Xcode: 1. Download it through Mac App Store. 2. Manually
download it from Apple's developer website.

Download Xcode from Mac App Store

To download Xcode, launch the Mac App Store on your Mac. If you're using the latest version
of Mac OS, you should be able to open the Mac App Store by clicking the icon in the dock. In
case you can't find it, you may need to upgrade your Mac OS.

2. Register Your Apple ID

3. Install Xcode

11

https://appleid.apple.com/account

Figure 1-1. App Store icon in the dock

In the Mac App Store, simply search "Xcode" and click the"Get" button to download it.

Figure 1-2. Download Xcode 8

12

Once you complete the installation process, you will find the Xcode folder in the Launchpad.

Figure 1-3. Xcode icon in the Launchpad

At the time of this writing, the latest version of Xcode is 8.0. Throughout this book, we will use
this version of Xcode to create the demo apps. Even if you have installed Xcode before, I
suggest you upgrade to the latest version. This should make it easier for you to follow the
tutorials.

Download Xcode 8 from Developer's website

Normally you can download Xcode from the Mac App Store, which is the recommended way
for beginners. For any reason you don't want to use Mac App Store, you can download Xcode 8
manually. To get a copy of it, you have to sign into the Apple Developer website
(http://developer.apple.com/register/). Select Download Tools and then click Download
Xcode 8 GM.

13

http://developer.apple.com/register/

Once the file is downloaded, double-click and install it.

A common question about developing an iOS app is whether you need to enroll in the Apple
Developer Program (https://developer.apple.com/programs/). The short answer is optional.
First, Xcode already includes a built-in iPhone and iPad simulator. You can develop and test
out your app on your Mac, without enrolling in the program.

Starting from Xcode 7, Apple has changed its policy regarding permissions required to build
and run apps on devices. Before that, the company required you to pay $99 per year in order to
deploy and run your apps on a physical iPhone or iPad. Now, program membership is no
longer required. Everyone can test their apps on a real device without enrolling into the Apple
Developer Program. Having that said, if you want to try out some advanced features such as in-
app purchase and CloudKit, you still need to apply for the program membership. Most
importantly, you're not able to submit your app to App Store without paying $99 annually.

So, should you enroll into the program now? The Apple Developer Program costs US$99 per
year. It's not big money but it's not cheap either. As you're reading this book, you're probably a
newcomer and just start exploring iOS development. The book is written for beginners. We will
first start with something simple. You are not going to tap into the advanced features yet.

Therefore, even if you do not enroll into the program, you will still be able to build an app and
test it on your device. So save your money for now. I will let you know when you need to enroll
into the program. At that time, you're encouraged to join the program as you're ready to
publish the app to the App Store!

Now that you have configured everything you need to start iOS app development, let me
answer another common question from beginners before moving on. A lot people have asked
about what skills you need to learn in order to develop an iOS app. In brief, it comes down to
three things:

Learn Swift - Swift is now the recommended programming language for writing iOS apps.

4. Enroll in the Apple Developer Program (Optional)

5. What You Need to Learn

14

https://developer.apple.com/programs/

Learn Xcode - Xcode is the development tool for you to design the app UI, write Swift
code, and build your apps.
Understand the iOS software development kit - Apple provides the software development
kit for developers to make our lives simpler. This kit comes with a set of software tools and
APIs that empowers you to develop iOS apps. For example, if you want to display a web
page in your app, the SDK provides a built-in browser that lets you embed right in your
application.

You will have to equip yourself with knowledge on the above three areas. That's a lot of stuff.
But no worries. You'll learn the skills as you read through the book.

That's all for the introduction. Take some time to register as an Apple developer and install
Xcode 8. When we move onto the next chapter, we will start programming in Swift. So get
ready!

15

Just play. Have fun. Enjoy the game.

- Michael Jordan

In the Worldwide Developer Conference 2014, Apple surprised all iOS developers by launching
a new programming language called Swift. Swift is advertised as a "fast, modern, safe,
interactive" programming language. The language is easier to learn and comes with features to
make programming more productive.

Prior to the announcement of Swift, iOS apps were primarily written in Objective-C. The
language has been around for more than 20 years and was chosen by Apple as the primary
programming language for Mac and iOS development. I've talked to many aspiring iOS
developers. A majority of them said Objective-C was hard to learn and its syntax looked weird.

Chapter 2
Swift Playgrounds

16

Simply put, the code scares some beginners off from learning iOS programming.

The release of Swift programming language is probably Apple's answer to some of these
comments. The syntax is much cleaner and easier to read. I have been programming in Swift
since its beta release. It's more than two years for now. I can say you're almost guaranteed to
be more productive using Swift. It definitely speeds up the development process. Once you get
used to Swift programming, it would be really hard for you to switch back to Objective-C.

It seems to me that Swift will lure more web developers to build apps. If you're a web developer
with some programming experience on any scripting languages, you can leverage your existing
expertise to gain knowledge on developing iOS apps. It would be fairly easy for you to pick up
Swift. Being that said, even if you're a total beginner with no prior programming experience,
you'll also find the language friendlier and feel more comfortable to develop apps in Swift.

In June 2015, Apple announced Swift 2, and that the programming language goes open source.
This is a huge deal. Since then, developers created some interesting and amazing open source
projects using the language. Not only can you use Swift to developer iOS apps, companies like
IBM developed web frameworks for you to create web apps in Swift. Probably some days, you
can use Swift to develop Android apps. Who knows?!

Earlier this year, Apple introduced Swift 3. The new version of the programming language is
integrated into Xcode 8, which is released in Sep, 2016. This is one of the biggest releases since
the birth of the language.

With Swift 3, every single API in Swift 3 is new again.

- Olivier Gutknecht, Senior Engineering Manager at Apple Inc.

In brief, there are a lot of changes in Swift 3. APIs are renamed and more features are
introduced. All these changes help making the language even better, and enable developer to
write more beautiful code. I will not go into the details of the changes here as I think you're
pretty new to Swift. But if you have some experience with Swift, and want to know more about
the changes, you can check out the appendix. For beginners, just read on. But remember to fire
up Xcode and follow me to write some code.

To get a taste of Swift programming language, let's take a look at the following code snippets.

17

Objective-C

const int count = 10;
double price = 23.55;

NSString *firstMessage = @"Swift is awesome. ";
NSString *secondMessage = @"What do you think?";
NSString *message = [NSString stringWithFormat:@"%@%@", firstMessage,
secondMessage];

NSLog(@"%@", message);

Swift

let count = 10
var price = 23.55

let firstMessage = "Swift is awesome. "
let secondMessage = "What do you think?"
var message = firstMessage + secondMessage

print(message)

The first block of code is written in Objective-C, while the second one is written in Swift. Which
language do you prefer? I guess you would prefer to programming in Swift, especially if you're
frustrated with the Objective-C syntax.

Constants and variables are two basic elements in programming. In the Objective-C world, it's
your responsibility to specify the type information when declaring a variable or a constant, be
it an integer or a string. For Swift, it introduces a new feature called Type Inference. You no
longer need to annotate variables/constants with type information. All you need to do is to use
 let to declare a constant and var to declare a variable. Swift is intelligent enough to deduce
the type by examining the values you provide.

Another difference that you may notice is the omission of the semi-colon. In Objective-C, you
have to end each statement with a semicolon. If you forget to do so, you will end up with an
error. I know many Objective-C beginners have experienced this error before. Swift should
make your developer's life easier.

Swift has added many powerful features to streamline your coding. As you can see from the
above example, string manipulation is much simpler. In Objective-C, you have to choose

18

between NSString and NSMutableString classes to indicate whether the string can be
modified. You do not need to make such choice in Swift. Whenever you assign a string as
variable (i.e. var), the string can be modified in your code. Concatenating strings is super easy.
Just use the + operator to combine two strings. Furthermore, Swift allows you to compare
strings directly using the == operator.

There is no better way to explore coding than actually writing code. Starting from Xcode 6,
Apple introduced a new feature called Playgrounds. It's an interactive development
environment for developers to experiment Swift programming and allows you to see the result
of your code in real-time. Xcode 8 makes it even better for beginners to explore Swift.
Surprisingly, you can now run Playgrounds on iPad too.

Anyway, we will focus on using Playgrounds in Xcode to learn Swift.

Assuming you've installed Xcode 8 (or up), launch the application (by clicking the Xcode icon
in Launchpad). You should see a startup dialog.

Figure 2-1. The startup dialog

19

Playground is a special type of Xcode file. You can simply click "Get started with a playground"
to get started. You'll then be prompted to fill in a project name and select a platform.

Figure 2-2. Creating a Playground file

Use the default name or choose your own name but remember to select iOS as the platform.
Once you confirm to save the file, Xcode opens the Playground interface. Your screen should
like this:

20

 On the left pane of the screen, it is the editor area where you type your code. As you write your
code, Playground immediately interprets your code and displays the result on the right pane.
By default, Playground includes two lines of code. As you can see, the result of the str
variable appears immediately on the right pane.

We'll write some code in Playgrounds together. Remember the purpose of this exercise is to let
you experience Swift programming and get a better idea of Xcode. I'll try to explain parts of the
code as we move along. For now, even if you do not understand any line of the code, that is
completely fine. I'm quite sure you'll be confused by some of the terms like class and method.
Forget about their meanings, just relax and play around with Xcode. We'll go over them again
in later chapters.

Cool! Let's get started.

First, key in a couple lines of code. Here we declare two more variables:

var message1 = "Hello Swift! How can I get started?"
var message2 = "The best way to get started is to stop talking and code."

As soon as you insert the above lines of code, you will see the result on the right pane.

21

Figure 2-4. Result is shown immediately on the right pane

Let's continue to add the following line of code:

message1.uppercased()

Xcode's editor comes with an auto-complete feature. Auto-complete is a very handy feature to
speed up your coding. Once you type mess , you'll see an auto-complete window showing some
suggestions based on what you have keyed in. All you need to do is to select message1 and hit
enter.

 Swift employs the dot syntax for calling methods and accessing the properties of a variable. As
you type the dot after message1 , the auto-complete window pops out again. It suggests a list of
methods and properties belonged to the variable. You can continue to type uppercase() or
select it from the auto-complete window.

 Once you complete your typing, you would see the output immediately. When we use
 uppercase() on message1 , the content of message1 is converted to upper case automatically.

22

Continue to type the following line of code:

message2.lowercased() + " Okay, I'm working on it "

Swift allows you to concatenate two strings with the + operator. The line of code converts the
content of message2 into lower case and then concatenated with another string. Interestingly,
you can include emoji characters in your code. You may wonder how to type emoji characters
in Mac OS. It's easy. Just press control-command-spacebar and an emoji picker will be
displayed.

Let's continue to type the following code snippet:

if message1 == message2 {
 print("Same message")
} else {
 print("Not the same message")
}

Conditional logic is very common in programming. Sometimes, you want to execute certain
part of code only when a certain condition is met. An if-else statement is one of the ways in
Swift to control program flow. Here we compare the content of message1 and message2
variables using the == operator. If they're equal, the program prints "Same message".
Otherwise, it prints "Not the same message". You should see the following result on your
screen.

Let's have some more fun and create a label, which is a common user interface element:

let messageLabel = UILabel(frame: CGRect(x: 0, y: 0, width: 300, height: 50))
messageLabel.text = message1
messageLabel

Here we use a built-in UILabel class to create a label and set its size to 300x50 points. We
then set its text to message1 . To preview a UI element in Playground, you can click the Quick
Look or Show Result icon. The Quick Look feature displays the label as a pop-over. If you use
the Show Result feature, Playground displays the label inline, right below your code.

23

 It's just a plain label. Wouldn't it be great if you can change its color? That's easy. You just
need one line of code to customize the color. What's more is that you can easily center the text
and change the label to round corner. Type the following lines and click the Show Result icon.

messageLabel.backgroundColor = UIColor.orange
messageLabel.textAlignment = NSTextAlignment.center
messageLabel.layer.cornerRadius = 10.0
messageLabel.clipsToBounds = true
messageLabel

You'll see a rounded corner label with orange background like this:

Figure 2-8. Label in orange

24

This is the power of iOS SDK. It comes with tons of pre-built elements and allows developers to
customize them with few lines of code.

Don't get me wrong. Typically you do not need to write code to create the user interface. Xcode
provides a Storyboard feature that lets you design UI using drag-and-drop. We'll go through it
in the next chapter.

You've got a taste of Swift. What do you think? Love it? I hope you find Swift a lot easier to
learn and code. Most importantly, I hope it don't scare you away from learning app
development. For reference, you can download the Playground file from
http://www.appcoda.com/resources/swift3/MyPlayground.zip.

What's coming up is that I will teach to build your first app. You can now move onto the next
chapter. However, if you want to learn more about the Swift programming language, I would
recommend you to download this Playground file and go through the exercise. The Playground
file is similar to an interactive book that covers the basics of Swift. You will learn the language
syntax, understand functions, optionals, and many more.

But it's not a must.

If you can't wait to build your first app, move onto the next chapter, and check out the
Playground file later.

What's Next

25

http://www.appcoda.com/resources/swift3/MyPlayground.zip
http://www.appcoda.com/resources/swift3/SwiftIntro.zip

Learn by doing. Theory is nice but nothing replaces actual experience.

– Tony Hsieh

By now you should have installed Xcode 8 and some understandings of Swift language. If you
haven't done so, check out the first chapter about what you need to begin iOS programming.

Chapter 3
Hello World! Build Your First App in
Swift

26

We'll use Xcode 8.0 (or up) to work on all exercises in this book.

You may have heard of the "Hello World" program if you have read any programming book
before. Hello World is a program for the first-time programmer to create. It's a very simple
program that outputs "Hello, World" on the screen of a device. It's a tradition in the
programming world. Let's follow the programming tradition and create a "Hello World" app
using Xcode.

Despite its simplicity, the "Hello World" program serves a few purposes:

It gives you an overview of the syntax and structure of Swift, the new programming
language of iOS.
It also gives you a basic introduction to the Xcode environment. You'll learn how to create
an Xcode project and lay out your user interface using Interface Builder. Even if you've
used Xcode before, you'll learn what's new in the latest version of Xcode.
You'll learn how to compile a program, build the app and test it using the built-in
simulator.
Lastly, it makes you think programming is not difficult. I don't want to scare you away
from learning programming. It'll be fun.

Your first app, as displayed in figure 3-1, is very simple and just shows a "Hello World" button.
When a user taps the button, the app shows a welcome message. That's it. Extremely simple
but it helps you kick off your iOS programming journey.

Your First App

27

Figure 3-1. HelloWorld App

When you're building your first app, please keep one thing in mind: forget about the code. I'm
quite sure that you will find some of the Swift code difficult to understand. No worries. Just
focus on the exercise, and get yourself familarized with the Xcode environment. We will talk
about the code in the next chapter.

First, open Xcode. Once launched, Xcode displays a welcome dialog. From here, choose
"Create a new Xcode project" to start a new project:

Let's Jump Right Into the Project

28

Figure 3-2. Xcode - Welcome Dialog

Xcode shows various project templates for selection. The Single View Application template is
the most common template for creating an iOS app. So, choose iOS > Single View Application
and click Next.

29

Figure 3-3. Xcode Project Template Selection

This brings you to the next screen to fill in all the necessary options for your project.

30

Figure 3-4. Options for your Hello World project

You can simply fill in the options as follows:

Product Name: HelloWorld – This is the name of your app.

Team: Just leave it as it is. If you click the button, it will prompt you to sign in with your
Apple ID. For your first app, just skip this step.

Organization Name: AppCoda – It's the name of your organization. You may use your
name if you're not building an app for your organization.

Organization Identifier: com.appcoda – It's actually the domain name written the
other way round. If you have a domain, you can use your own domain name. Otherwise,

31

you may use "com.appcoda" or just fill in "edu.self".

Bundle Identifier: com.appcoda.HelloWorld - It's a unique identifier of your app,
which is used during app submission. You do not need to fill in this option. Xcode
automatically generates it for you.

Language: Swift – Xcode 8 supports both Objective-C and Swift for app development.
As this book is about Swift, we'll use Swift to develop the project.

Devices: iPhone – Select "iPhone" for this project. Let's keep things simple and build
the app for the iPhone device only.

Use Core Data: [unchecked] – Do not select this option. You do not need Core Data
for this simple project. We'll explain Core Data in later chapters.

Include Unit Tests: [unchecked] – Do not select this option. You do not need unit
tests for this simple project.

Include UI Tests: [unchecked] – Do not select this option. You do not need UI tests
for this simple project.

Click "Next" to continue. Xcode then asks you where to save the "HelloWorld" project. Pick any
folder (e.g. Desktop) on your Mac. You may notice there is an option for source control. Just
deselect it. We do not need to use the option in this book. Click "Create" to continue.

32

Figure 3-5. Choose a folder and save your project

After you confirm, Xcode automatically creates the "Hello World" project. The screen will look
like the screenshot shown in figure 3-6.

33

Before we start to write some code, let's take a few minutes to have a quick look at the Xcode
workspace environment. In the left pane is the project navigator. You can find all your project
files in this area. The center part of the workspace is the editor area. You do all the editing stuff
here (such as editing the project setting, source code file, user interface) in this area.

Depending on the type of file, Xcode shows you different interfaces in the editor area. For
instance, if you select ViewController.swift in the project navigator, Xcode displays the
source code in the center area (see figure 3-7). If you select Main.storyboard, which is the file
for storing user interface, Xcode shows you the visual editor for storyboard (see figure 3-8).

Familiarize Yourself with Xcode Workspace

34

Figure 3-7. Xcode Workspace with Source Code Editor

35

Figure 3-8 . Xcode Workspace with Storyboard Editor

The rightmost pane is the utility area. This area displays the properties of the file and allows
you to access Quick Help. If Xcode doesn't show this area, you can select the rightmost button
in the toolbar (at the top-right corner) to enable it.

36

Figure 3-9. Show/hide the content areas of your workspace

The middle view button of the view selector is deselected by default. If you click on it, Xcode
displays the debug area right below the editor area. The debug area, as its name suggests, is
used for showing debug messages. We'll talk about that in a later chapter, so don't worry if you
do not understand what each area is for.

Until now, we haven't written a single line of code. Even so, you can run your app using the
built-in simulator. This will give you an idea how to build and test your app in Xcode. In the
toolbar you should see the Run button.

Run Your App for the First Time

37

Figure 3-10. Run and Stop Buttons in Xcode

The Run button in Xcode is used to build an app and run it in the selected simulator. By
default, the Simulator is set to iPhone SE. If you click the iPhone SE button, you'll see a list of
available simulators such as iPhone 4s and iPhone 6s Plus. Let's select iPhone 6 as the
Simulator, and give it a try.

Once selected, you can click the Run button to load your app in the Simulator. Figure 3-11
shows the simulator of an iPhone 6.

38

Figure 3-11. The Simulator

Quick tip: On non-retina Mac, it may not be able to show the full simulator
window. You can select the simulator, and press command+2 or command+3 to scale
it down. Alternatively, you can go up to the menu, and choose Window > Scale.

A white screen with nothing inside?! That's normal. So far we haven't designed the user
interface or written any lines of code. This is why the simulator shows a blank screen. To
terminate the app, simply hit the Stop button in the toolbar.

Try to select another simulator (e.g. iPhone SE) and run the app. Just play around with it to get
yourself familiarize with the Xcode development environment.

Now that you have a basic idea of the Xcode development environment, let's move on and
design the user interface of your first app. In the project navigator, select the Main.storyboard
file. Xcode then brings up a visual editor for storyboards, known as Interface Builder.

A Quick Walkthrough of Interface Builder

39

The Interface Builder editor provides a visual way for you to create and design an app's UI. Not
only can you use it to design individual view (or screen), the Interface Builder's storyboard
designer lets you lay out multiple views, and chain them together using different types of
transitions to create the complete user interface. All these can be done without writing a line of
code.

Figure 3-12 . The Interface Builder Editor

The Object library at the lower right pane contains all the available UI objects such as button,
label, image view for you to design your user interface. If you can't see the Object library, click
the Show the Object library button, as displayed in figure 3-12, to reveal it. You can view the
Object library in two difference modes: list view and icon view. I prefer to use icon view in this
book. But if you want to change to the list view mode, simply use the toggle button to switch
between them.

Since we chose to use the Single View Application template during project creation, Xcode

40

generated a default view controller scene in the storyboard. In your Interface Builder, you
should see a view controller in the editor area. This view controller is where you design the
app's user interface. Each screen of an app is usually represented by a view controller.
Interface Builder allows you to add multiple view controllers to the storyboard and link them
up. Later in this book, we will further discuss about that. Meanwhile, focus on learning how to
use Interface Builder to lay out the UI for that view controller.

A scene in storyboard represents a view controller and its views. When
developing iOS apps, views are the basic building blocks for creating your user
interface. Each type of view has its own function. For instance, the view you
find in the storyboard is a container view for holding other views such as
buttons, labels, image views, etc.

A view controller is designed to manage its associated view and subviews (e.g.
button and label). If you are confused about the relationship between views and
view controllers, no worries. We will discuss how a view and view controller
work together in the later chapters.

The Document Outline view of the Interface Builder editor shows you an overview of all scenes
and the objects under a specific scene. The outline view is very useful when you want to select a
particular object in the storyboard. If the outline view doesn't appear on screen, use the toggle
button (see figure 3-12) to enable/disable the outline view.

Lastly, there is a configuration bar in the Interface Builder. To reveal the bar, place the mouse
cursor on View as: iPhone 6s , and then single-click on it. The configuration bar is a new
feature in Xcode 8 that lets you live preview your app UI on different devices. Furthermore,
you can use the + and - buttons to zoom in/out the storyboard. We will talk about this new
feature later on.

Figure 3-13 . The new configuration bar in Xcode 8

What is a Scene?

41

Now we are going to design the app's user interface. First, we will add a Hello World button to
the view. At the bottom part of the utility area, it shows the Object library. Here, you can
choose any of the UI objects, and drag-and-drop them into the view. If you're in the icon view
mode of the Object library, you can click on any of the objects to reveal the detailed
description.

Okay, it's time to add a button to the view. All you need to do is drag a Button object from the
Object library to the view.

Figure 3-14. Drag the Button to the View

As you drag the Button object to the view, you'll see a set of horizontal and vertical guides if the
button is centered. Stop dragging, and release your button to place the Button object there.

Next, let's rename the button. To edit the label of the button, double-click it and name it "Hello

Designing the User Interface

42

World". After the change, you may need to center the button again.

Figure 3-15. Renaming the button

Great! You're now ready to test your app. Select the iPhone 6/6s simulator and hit the Run
button to run the project, you should see a Hello World button in the simulator as shown in
figure 3-16. Cool, right?

However, when you tap the button, it shows nothing. We'll need to add a few lines of code to
display the "Hello, World" message.

43

Figure 3-16. Hello World app with a Button

Quick note: This is the beauty of iOS development. The code and user interface
of an app are separated. You're free to design your user interface in Interface
Builder and prototype an app without writing any lines of code.

Now that you've completed the UI of the HelloWorld app, it's time to write some code. In the
project navigator, you should find the ViewController.swift file. Because we initially selected
the Single View Application project template, Xcode already generated a ViewController class
in the ViewController.swift file. This file is actually associated with the view controller in the
storyboard. In order to display a message when the button is tapped, we'll add some code to
the file.

Swift versus Objective-C
If you have written code in Objective-C before, one big change in Swift is the
consolidation of header (.h) and implementation file (.m). All the information
of a particular class is now stored in a single .swift file.

Coding the Hello World Button

44

Select the ViewController.swift file and the editor area immediately displays the source code.
Type the following lines of code in the ViewController class:

@IBAction func showMessage() {
 let alertController = UIAlertController(title: "Welcome to My First App",
message: "Hello World", preferredStyle: UIAlertControllerStyle.alert)
 alertController.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.default, handler: nil))
 present(alertController, animated: true, completion: nil)
}

Quick note: I encourage you to type the code, rather than copy & paste it.

Your source code should look like this after editing:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a
nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func showMessage() {
 let alertController = UIAlertController(title: "Welcome to My First
App", message: "Hello World", preferredStyle: UIAlertControllerStyle.alert)
 alertController.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.default, handler: nil))
 present(alertController, animated: true, completion: nil)
 }
}

What you have just done is added a showMessage() method in the ViewController class. The
Swift code within the method is new to you. I will explain it to you in the next chapter.
Meanwhile, just consider the showMessage() as an action. When this action is called, the block
of code will instruct iOS to display a "Hello World" message on screen.

45

I said before that the beauty of iOS development is the separation of code (.swift file) and user
interface (storyboards). But how can we establish the relationship between our source code
and user interface?

To be specific for this demo, the question is:

How can we connect the "Hello World" button in the storyboard with the showMessage()
method in the ViewController class?

You need to establish a connection between the "Hello World" button and the showMessage()
method you've just added, such that the app responds when someone taps the Hello World
button.

Now select Main.storyboard to switch back to the Interface Builder. Press and hold the control
key of the keyboard, click the "Hello World" button and drag it to the View Controller icon.
Release both buttons (mouse + keyboard) and a pop-up shows the showMessage option under
Sent Events. Select it to make a connection between the button and showMessage action.

Connecting the User Interface with Code

46

Figure 3-17. Drag to the View Controller icon (left), a pop-over menu appears when releasing
the buttons (right)

That's it! You're now ready to test your first app. Just hit the Run button. If everything is
correct, your app should run properly in the simulator. This time, the app displays a welcome
message when you tap the Hello World button.

Test Your App

47

Figure 3-18. Hello World app

There is one more thing I want to discuss with you before ending the chapter. As mentioned
before, you do not need to write code to customize a UI control. Here, I want to show you how
easy it is to change the properties (e.g. color) of a button.

Select the "Hello World" button and then click the Attributes inspector under the Utility area.
You'll be able to access the properties of the button. Here, you can change the font, text color,
background color, etc. Try to change the text color (under Button section) to white and
background (scroll down and you'll find it under View section) to red or whatever color you
want.

Changing the Button Color

48

Figure 3-19. Changing the color of the Hello World button

Run the project again and see what you get.

Not only can you change the color of a button, you can modify the font type and size in the
Attributes inspector by setting the Font option. Your task is to continue to work on the project
and create a user interface like figure 3-20. When a user taps any of the buttons, the app
displays the same Hello World message.

Your Exercise

49

Figure 3-20. Your exercise

To give you some hints, here are the things you will need to:

1. Resize the "Hello World" button and change its font size to 50 points. Also, set the font
style from Regular to Medium.

2. Add three more buttons. Each of them has an emoji icon as its title. To key in emoji
characters, you can hold down control+command and then press spacebar.

3. Establish a connection between the buttons and the showMessage() method.

Congratulations! You've built your first iPhone app. It's a simple app, but I believe you already
have a better understanding of Xcode and understand how an app is built. It's easier than you

What's Coming Next

50

thought, right?

In the next chapter, we'll discuss the details of the Hello World app and explain how everything
works together.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/HelloWorld.zip.

For the solution of the exercise, you can download it from
http://www.appcoda.com/resources/swift3/HelloWorldExercise.zip.

51

http://www.appcoda.com/resources/swift3/HelloWorld.zip
http://www.appcoda.com/resources/swift3/HelloWorldExercise.zip

Any fool can know. The point is to understand.

– Albert Einstein

Isn't it easy to build an app? I hope you enjoyed building your first app.

Before we continue to explore the iOS SDK, let's take a pause here and have a closer look at the
Hello World app. It'll be good for you to understand the basics of the Swift language and the
inner workings of the app.

So far you followed the step-by-step procedures to build the Hello World app. As you read
through the chapter, you may have had a few questions in mind:

How does the View Controller in the storyboard link up with the ViewController class in
the ViewController.swift file?
What does the block of code inside the showMessage() method mean? How does it tell iOS
to show a Hello World message?
What does @IBAction keyword mean?
What is behind the "Hello World" button? How can the button detect tap and trigger the
 showMessage() method?
How does the Run button in Xcode work? What do you mean by "compile an app"?

I wanted you to focus on exploring the Xcode environment so I didn't explain any of the above
questions. Yet it's essential for every developer to understand the details behind the code and
grasp the basic concept of iOS programming. The technical concepts may be a bit hard to
understand, in particular, if you have no prior programming experience. Don't worry because
this is just the beginning. As you continue to study and write more code in the later chapters,
you will gain a better understanding of iOS programming. Just try your best to learn as much
as possible.

Chapter 4
Hello World App Explained

52

Before diving into the programming concept, let's take a look at a real life example.

Consider a TV remote control. It's convenient to control the volume of a TV set wirelessly with
a remote. To switch TV channels, you simply key in the channel number. To increase the
speaker volume, you press the Volume + button.

Let me ask you. Do you know what happens behind the scene when pressing the Volume
button or the channel button? Probably not. I believe most of us don't know how a remote
control communicates with a TV set wirelessly. You may just think that the remote sends a
certain message to the TV and triggers the volume increase or channel switch.

In this example, the button that interacts with you is commonly characterized as the interface
and the inner details that hide behind the button are referred as the implementation. The
interface communicates with the implementation via a message.

This concept can also be applied in the iOS programming world. The user interface in
storyboard is the interface, while the code is the implementation. The user interface objects

53

(e.g. button) communicate with the code via messages.

Specifically, if you go back to the Hello World project, the button you added in the view is the
interface. The showMessage() method of the ViewController class is the implementation.
When someone taps the button, it sends a showMessage message to ViewController by
invoking the showMessage() method.

What we have just demonstrated is one of the important concepts behind Object Oriented
Programming known as Encapsulation. The implementation of the showMessage() method is
hidden from the outside world (i.e. the interface). The Hello World button has no idea how the
 showMessage() method works. All it knows is that it needs to send a message. The
 showMessage() method handles the rest by displaying a "Hello World" message on the screen.

Quick note: Like Objective-C, Swift is an Object-Oriented Programming (OOP)
language. Most of the code in an app in some ways deals with objects of some
kind. I don't want to scare you away by teaching you the OOP concepts here.
Just keep reading. As we go along, you'll learn more about OOP.

Now that you should have a basic understanding about how the button in the UI
communicates with the code, let's take a look at what actually happens when a user taps the
"Hello World" button? How does the "Hello World" button invoke the execution of the
 showMessage() method?

Do you remember how you established the connection between the Hello World button and
the showMessage event in the Interface Builder editor?

Open Main.storyboard again and select the "Hello World" button. Click the Connection
inspector icon in the Utility area. Under the Sent Events section, you should find a list of
available events and its corresponding method to call. As you can see in the below figure, the
"Touch Up Inside" event is connected to the showMessage() method.

Behind the Touch

54

In iOS, apps are based on event-driven programming. Whether it's a system object or UI
object, it listens for certain events to determine the flow of the app. For a UI object (e.g.
Button), it may listen for a specific touch event. When the event is triggered, the object calls up
the preset method that associates with the event.

In the Hello World app, when users lift up the finger inside the button, the "Touch Up Inside"
event is triggered. Consequently, it calls up the showMessage() method to display the "Hello
World" message. We use the "Touch Up Inside" event instead of "Touch Down" because we
want to avoid an accidental or false touch. The illustration shown in figure 4-3 sums up the
event flow and what I have just described.

55

Figure 4-3. Event flow in the Hello World App

You should now have a better understanding of iOS programming. But what is the block of
code within the showMessage() method?

First things first, what is a method? As mentioned before, most of the code in an app in some
ways deals with objects of some kinds. Each object provides certain functions and performs
specific tasks (e.g. display a message on screen). These functions when expressed in code are
known as methods.

Now, let us take a closer look at the showMessage() method.

Inside the showMessage Method

56

Quick note: I know it may be a bit hard for you to understand the code. If
you're completely new to programming, it'll take some time to get used to
Object Oriented Programming. Don’t give up, as you’ll gain a better
understanding of objects, classes and methods as we move along. You can also
take a look at the Appendix to learn more about Swift. Or refer to the exercise
in the Playgrounds chapter.

In Swift, to declare a method in a class, we use the func keyword. Following the func
keyword is the name of the method. This name identifies the method and makes it easy for the
method to be called elsewhere in your code. Optionally, a method can take in parameters as
input. The parameters are defined within the parentheses. In our example, however, the
method doesn't need any parameter. In this case, we simply write an empty pair of
parentheses.

There is one keyword in the method declaration that we haven't discussed. It's the @IBAction
keyword. This keyword allows you to connect your source code to user interface objects in
Interface Builder. When it is inserted in the method declaration, it indicates the method can be
exposed to Interface Builder. This is why the showMessage event appeared in a pop-over when

57

you established the connection between the Hello World button and the code in chapter 3.
Refer to figure 3-17 if you do not understand what I mean.

Okay, enough for the method declaration. Let's talk about the block of code enclosed in the
curly braces. The code block is the actual implementation of the task performed by the method.

If you look at the first line of the code block closely, we make use of UIAlertController to
construct the Hello World message. What the heck is UIAlertController ? Where does it come
from?

When developing apps in iOS, we don't need to write all functions from scratch. Say, you don't
need to learn how to draw the alert box on screen. The iOS SDK, bundled in Xcode, already
provides you with tons of built-in functions to make your life easier. These functions are
usually known as APIs and organized in the form of frameworks. The UIKit framework is just
one of them, that provides classes and functions to construct and manage your app's user
interface. For example, the UIViewController and UIAlertController are actually come from
the UIKit framework.

There is one thing to take note. Before you can use any functions from the framework, you
have to first import it. This is why you find this statement at the very beginning of
 ViewController.swift :

import UIKit

Now, let's continue to look into the showMessage() method.

The first line of code creates a UIAlertController object, and store it in alertController . The
syntax of constructing an object from a class is very similar to calling a method. You specify the
class name, followed by a set of initial values of properties. Here we specify the title, message
and style of the alert:

let alertController = UIAlertController(title: "Welcome to My First App",
message: "Hello World", preferredStyle: UIAlertControllerStyle.alert)

Right after creating the UIAlertController object (i.e. alertController), we call the addAction
method to add an action to the alert so that it displays a "OK" button. When programming in
Swift, you call a method by using dot syntax.

58

alertController.addAction(UIAlertAction(title: "OK", style:
UIAlertActionStyle.default, handler: nil))

You may wonder how you can find out about the usage and available methods of a class. A
simple answer is: Read the documentation. You can go up to Google to look up the class. But
Xcode provides a convenient way to access the documentation of the iOS SDK.

In Xcode, you can press and hold the option key, point the cursor to the class name (e.g.
 UIAlertController) in your code and then click. A pop-over will appear displaying the class
description and sample code. If you need further information, scroll down and click the class
reference link. This will bring you to the official documentation of the class.

After the UIAlertController object is configured, the last line of the code is for showing the
alert message on screen.

present(alertController, animated: true, completion: nil)

To display the alert, we ask the current view controller to present the alertController object
with animation.

Sometimes, the above line of code may be written like this:

self.present(alertController, animated: true, completion: nil)

In Swift, you use the self property to refer to the current instance (or object). In most cases,
the self keyword is optional. So you can omit it.

59

How does Xcode know that the View Controller in Interface Builder links up with the
 ViewController class defined in ViewController.swift ?

The whole thing seems to be trivial but actually it is not. Do you remember the project
template that we chose when creating the Xcode project? It is the Single View Application
template.

When this project template is used, it automatically creates a default view controller in the
Interface Builder editor and generates ViewController.swift . On top of that, the view
controller is automatically linked with the ViewController class defined in the swift file.

Go to Main.storyboard , select View Controller in the document outline view. In the Utility
area, select the Identity inspector icon and you'll find that ViewController is set as the custom
class. This is how the objects in Interface Builder associate with the classes in Swift code.

Relationship Between User Interface and Code

Behind the Scene of the Run Button

60

One final thing I would like to talk about is the Run button. When you click the Run button,
Xcode automatically launches the simulator and runs your app. But what happens behind the
scene? As a developer, you have to look at all the pieces.

The entire process can be broken into three phases: compile, package and run.

Compile – You probably think iOS understands Swift code. In reality, iOS only reads
machine code. The Swift code is for developer to write and read. To make iOS understand
the source code of the app, it has to go through a translation process to translate the Swift
code into machine code. This process is referred as "compile". Xcode already comes with a
built-in compiler to compile the source code.
Package – Other than source code, an app usually contains resource files such as images,
text files, sound files, etc. All these resources are packaged to make up the final app. We
used to refer to these two processes as the "build" process.
Run – This actually launches the simulator and loads your app.

You should now have a basic understanding of how the Hello World app works. As a beginner
without any prior programming experience, it's not easy to understand all the programming
concepts we just discussed. No worries. As you write more code and develop a real app in the
upcoming chapters, you'll have a better idea about Swift and iOS programming.

Summary

61

Life is short. Build stuff that matters. – Siqi Chen

Wasn't it fun to create the Hello World app? Before we move onto building a real app, we'll
take a look at Auto Layout in this chapter.

Auto layout is a constraint-based layout system. It allows developers to create an adaptive UI
that responds appropriately to changes in screen size and device orientation. Some beginners
find it hard to learn and avoid using it. Some developers even avoid using it. But believe me,
you won't be able to live without it when developing an app today.

With the release of iPhone 6/6s and 6/6s Plus, Apple's iPhones are available in different screen
sizes including 3.5-inch, 4-inch, 4.7-inch and 5.5-inch displays. Without using auto layout, it

Chapter 5
Introduction to Auto Layout

62

would be very hard for you to create an app that supports all screen resolutions. And, starting
from Xcode 6, it is inevitable to use auto layout to design the user interface. This is why I want
to teach you auto layout at the very beginning of this book, rather than jumping right into
coding a real app.

In this chapter and the one that follows, I want to help you build a solid foundation on
designing an adaptive user interface.

Quick note: Auto layout is not as difficult as some developers thought. Once
you understand the basics, you will be able to use auto layout to create
complex user interfaces for all types of iOS devices.

Let me give you an example, and you'll have a better idea why auto layout is needed. Open the
HelloWorld project you built in chapter 3. Instead of running the app on iPhone 6/6s
simulator, run it using the iPhone 6 Plus or iPhone 5 simulator. You'll end up with the results
illustrated in figure 5-1. It turns out that the button isn't centered when running on other
iPhone devices, except iPhone 6/6s.

Why Auto Layout?

63

Figure 5-1. The app UI looks different when running on iPhone 5s (4-inch), iPhone 6 (4.7-
inch) and iPhone 6 Plus (5.5-inch)

Let's try one more thing.

Click the Stop button and run the app using the iPhone 6/6s simulator. After the simulator
launches, go up to the menu and select Hardware > Rotate Left (or Rotate Right) from the
menu. This rotates the device to landscape mode. Alternatively, you can press command+left
arrow/right arrow to rotate the device sideway. Again, the Hello World button is not centered.

Why? What's wrong with it?

As you know, the iPhone devices have different screen dimensions:

For iPhone 5/5s, the screen in portrait mode consists of 320 points (or 640 pixels)
horizontally and 568 points (or 1136 pixels) vertically.
For iPhone 6/6s, the screen consists of 375 points (or 750 pixels) horizontally and 667

64

points (or 1334 pixels) vertically.
For iPhone 6/6s Plus, the screen consists of 414 points (or 1242 pixels) horizontally and
736 points (or 2208 pixels) vertically.
For iPhone 4s, the screen consists of 320 points (or 640 pixels) and 480 points (or 960
pixels).

Back in 2007, Apple introduced the original iPhone with a 3.5-inch display with
a resolution of 320x480. That is 320 pixels horizontally and 480 pixels
vertically. Apple retained this screen resolution with the succeeding iPhone 3G
and iPhone 3GS. Obviously, if you were building an app at that time, one point
corresponds to one pixel. Later, Apple introduced iPhone 4 with retina display.
The screen resolution was doubled to 640x960 pixels. So one point corresponds
to two pixels for retina display.

The point system makes our developers' lives easier. No matter how the screen
resolution is changed (say, the resolution is doubled again to 1280x1920
pixels), we still deal with with points and the base resolution (i.e. 320x480
for iPhone 4/4s or 320x568 for iPhone 5/5s). The translation between points and
pixels is handled by iOS.

Without using auto layout, the position of the button we lay out in the storyboard is fixed. In
other words, we "hard-code" the frame origin of the button. In our example, the "Hello World"
button's frame origin is set to (147, 318). Therefore, whether you're using a 3.5-inch or 4-inch
or 5.5-inch simulator, iOS draws the button in the specified position. Figure 5-2 illustrates the
frame origin on different devices. This explains why the "Hello World" button can only be
centered on iPhone 6/6s, and it is shifted away from the screen center on other iOS devices, as
well as, in landscape orientation.

Why Points instead of Pixels?

65

Figure 5-2. How the button is displayed on iPhone 6 Plus, iPhone 6 and iPhone 5s

Obviously, we want the app to look good on all iPhone models, and in both portrait &
landscape orientation. This is why we have to learn auto layout. It's the answer to the layout
issues, that we have just talked about.

As mentioned before, auto layout is a constraint-based layout system. It allows developers to
create an adaptive UI that responds appropriately to changes in screen size and device
orientation. Okay, it sounds good. But what does the term "constraint-based layout" mean? Let
me put it in a more descriptive way. Consider the "Hello World" button again, how do you
describe its position if you want to place the button at the center of the view? You would

Auto Layout is All About Constraints

66

probably describe it like this:

The button should be centered both horizontally and vertically, regardless of the screen
resolution and orientation.

Here you actually define two constraints:

center horizontally
center vertically

These constraints express rules for the layout of the button in the interface.

Auto layout is all about constraints. While we describe the constraints in words, the constraints
in auto layout are expressed in mathematical form. For example, if you're defining the position
of a button, you might want to say "the left edge should be 30 points from the left edge of its
containing view." This translates to button.left = (container.left + 30) .

Fortunately, we do not need to deal with the formulas. All you need to know is how to express
the constraints descriptively and use Interface Builder to create them.

Okay, that's quite enough for the auto layout theory. Now let's see how to define layout
constraints in Interface Builder to center the "Hello World" button.

First, open Main.storyboard of your HelloWorld project (or download it from
http://www.appcoda.com/resources/swift3/HelloWorld.zip). Before we add the layout
constraints to the user interface, let me introduce a handy feature in Xcode 8.

Instead of viewing the app UI in simulators, Xcode 8 provides a configuration bar in Interface
Builder for developers to live preview the user interface.

By default, Interface Builder is set to preview the UI on iPhone 6s. To see how your app looks
on other devices, click View as: iPhone 6s button to reveal the configuration bar and then
choose your preferred iPhone/iPad devices to test. You can also alter the device's orientation to
see how it affects your app's UI. Figure 5-3 shows a live preview of the Hello World app on

Live Previewing in Interface Builder

67

http://www.appcoda.com/resources/swift3/HelloWorld.zip

iPhone 6s in landscape orientation.

Figure 5-3. Live preview using Xcode 8's new configuration bar

The configuration bar is a great feature in Xcode 8. Take some time to play around with it.

Quick note: You may wonder what "(wC hC)" means. Just forget about it right now
and focus on learning auto layout. I will discuss about it in the later
chapter.

Now let's continue to talk about auto layout. Xcode provides two ways to define auto layout
constraints:

1. Auto layout bar

Using Auto Layout to Center the Button

68

2. Control-drag

We'll demonstrate both approaches in this chapter. First, we begin with the auto layout bar. At
the bottom-right corner of the Interface Builder editor, you should find four buttons. These
buttons are from the layout bar. You can use them to define various types of layout constraints.

Each button has its own function:

Align – Create alignment constraints, such as aligning the left edges of two views.
Pin – Create spacing constraints, such as defining the width of a UI control.
Issues – Resolve layout issues.
Stack – Embed views into a stack view. Stack view is a new feature since Xcode 7. We will
further discuss about it in the next chapter.

As discussed earlier, to center the "Hello World" button, you have to define two constraints:
center horizontally and center vertically. Both constraints are with respect to the view.

To create the constraints, we will use the Align function. First, select the button in Interface
Builder and then click the Align icon in the layout bar. In the pop-over menu, check both
"Horizontal in container" and "Vertically in container" options. Then click the "Add 2
Constraints" button.

69

Figure 5-5. Adding constraints using Align button

Quick tip: You can press command+0 to hide the project navigator. This will
free up more screen space for you to work on the app design.

You should now see a set of constraint lines. If you expand the Constraints option in the
document outline view, you will find two new constraints for the button. These constraints
ensure the button is always positioned at the center of the view. Alternatively, you can view
these constraints in the Size inspector.

70

Figure 5-6. View the constraints in Document Outline and Size Inspector

Quick note: When your view layout is being configured correctly and there is no
ambiguity, the constraint lines are in blue.

Okay, you're ready to test the app. You can click the Run button to launch the app on iPhone
6/6s Plus (or iPhone 4s). Alternatively, just choose another device or change the device's
orientation using the configuration bar to verify the layout. The button should be centered
perfectly, regardless of screen size and orientation.

The layout constraints that we have just set are perfect. But that is not always the case. Xcode
is intelligent enough to detect any constraint issues.

Try to drag the Hello World button to the lower-left part of the screen. Xcode immediately

Resolving Layout Constraint Issues

71

detects some layout issues and the corresponding constraint lines turns orange that indicates a
misplaced item.

Figure 5-7. Interface Builder uses orange/red lines to indicate Auto Layout issues

Auto layout issues occur when you create ambiguous or conflicting constraints. Here we said
the button should be vertically and horizontally centered in the container (i.e. the view).
However, the button is now placed at the lower-left corner of the view. Interface Builder found
this confusing, therefore it uses orange lines to indicate the layout issues.

When there is any layout issue, the Document Outline view displays a disclosure arrow
(red/orange). Now click the disclosure arrow to see a list of the issues. Interface Builder is
smart enough to resolve the layout issues for us. Click the indicator icon next to the issue and a
pop-over shows you a number of solutions. In this case, select the "Update Frame" option and
click "Fix Misplacement" button. The button will then be moved to the center of the view.

72

This layout issue was triggered manually. I just wanted to demonstrate how to find the issues
and fix them. As you go through the exercises in the later chapters, you will probably face a
similar layout issue. You should know how to resolve layout issues easily and quickly.

While you can use the configuration bar to live preview your app UI, Xcode provides an
alternate Preview feature for developers to preview the user interface on different devices
simultaneously.

In Interface Builder, open the Assistant pop-up menu > Preview (1). Now press and hold
 option key, then click Main.storyboard (Preview). You can refer to figure 5-9 for the steps.

An Alternative Way to Preview Storyboards

73

Figure 5-9. Assistant Pop-up Menu

Xcode will display a preview of your app's UI in the assistant editor. By default, it shows you
the preview on a iPhone 6s device. You can click the + button at the lower-left corner of the
assistant editor to add other iOS devices (e.g. iPhone 4s/SE) for preview. If you want to see
how the screen looks like in landscape orientation, simply click the rotate button. The Preview
feature is extremely useful for designing your app's user interface. You can make changes to
the storyboard (say, adding another button to the view) and see how the UI looks on the
chosen devices all at once.

74

If you want to free up some more screen space for the preview pane, hold both command and
option keys and then press 0 to hide the Utility area.

Quick tip: When you add more devices in the preview assistant, Xcode may not be
able fit the preview of all devices sizes into the screen at the same time. If
you're using a trackpad, you can scroll through the preview by swiping left or
right with two fingers. What if you're still using a mouse with a scroll wheel?
Simply hold the shift key to scroll horizontally.

Now that you have some idea about auto layout and the preview feature, let's add a label to the
lower-right part of the view and see how to define the layout constraints for the label. Labels in
iOS are usually used for displaying simple text and messages.

In the Interface Builder editor, drag a label from the Object library and place it near the lower-
right corner of the view. Double-click the label and change it to "Welcome to Auto Layout" or
whatever title you want.

Adding a Label

75

If you opened the preview assistant again, you should see the UI change immediately (see
figure 5-12). Without defining any layout constraints for the label, you are not able to display
the label on all iPhone devices except iPhone 6s and 6s Plus.

76

How can you resolve this issue? Obviously, we need to setup a couple of constraints to make it
work properly. The question is: what constraints should we add?

Let's try to describe the requirement of the label in words. You probably describe it like this:

The label should be placed at the lower-right corner of the view.

That's okay, but not precise enough. A more precise way to describe the location of the label is
like this:

The label is located 0 points away from the right margin of the view and 20 points away
from the bottom of the view.

This is much better. When you describe the position of an item precisely, you can easily come
up with the layout constraints. Here, the constraints of the label are:

1. The label is 0 points away from the right margin of the view.

2. The label is 20 points away from the bottom of the view.

77

In auto layout, we refer this kind of constraints as spacing constraints. To create these spacing
constraints, you can use the Pin button of the layout button. But this time we'll use the
Control-drag approach to apply auto layout. In Interface Builder, you can control-drag from
an item to itself or to another item along the axis for which you want to add constraints.

To add the first spacing constraint, hold the control key and drag from the label to the right
until the view becomes highlighted in blue. Now release the button, you'll see a pop-over menu
showing a list of constraint options. Select "Trailing space to container margin" to add a
spacing constraint from the label to the view's right margin.

In the document outline view, you should see the new constraint. Interface Builder now
displays constraint lines in red indicating that there are some missing constraints. That's
normal as we haven't defined the second constraint.

Now control-drag from the label to the bottom of the view. Release the button and select
"Vertical Spacing to Bottom Layout Guide" in the shortcut menu. This creates a spacing
constraint from the label to the bottom layout guide of the view.

78

Figure 5-14. Using Control-drag to add the second constraint

Once you added the two constraints, all constraint lines should be in solid blue. When you
preview the UI or run the app in simulator, the label should display properly on all screen
sizes, and even in landscape mode.

Figure 5-15. The UI now supports all screen sizes

You may wonder what the Bottom Layout Guide means. Generally, the Bottom Layout Guide
refers to the bottom of the view, like the one shown in the example. Sometimes, the Bottom
Layout Guide varies. For example, if there is a tab bar, the Bottom Layout Guide will refer to

Top and Bottom Layout Guide

79

the top of tab bar.

For the Top Layout Guide, it sits at 20 points (which is the height of the status bar) from the
top of the view.

Figure 5-16. Top layout guide

These layout guides are particularly useful for defining layout constraints because they
automatically varies its position when the view's layout is changed. For example, if the view
contains a navigation bar, the top layout guide sits below the navigation bar (see figure 5-17).
Therefore, as long as the UI object is constrained relative to the top/bottom layout guide, your
interface will layout correctly even if you add a navigation or tab bar to the interface.

80

Figure 5-17. Top layout guide with navigation bar

The "Welcome to Auto Layout" label is now located 0 points away from the right margin of the
view. What if you want to add some space between the label and the right margin of the view?
Interface Builder provides a convenient way to edit the constant of a constraint.

You can simply choose the constraint in the document outline view. Here, you should select
"trailingMargin" constraint. In the Attributes inspector, you can find the properties of this
constraint including relation, constant, and priority. The constant is now set to 0. You can
change it to 20 to add some extra space.

Editing Constraints

81

Figure 5-18. Editing a constraint

By now, I hope you should have some basic ideas about how to lay out your app UI and make it
fit for all screen sizes. Let's have a simple exercise before moving on to the next chapter. All I
need you to do is add another label named Learn Swift to the view with the following
constraints:

The new label should be 40 points away from the top layout guide.
The new label should be centered horizontally.

Optionally, you can increase the font size of the label to 30 points. To change the font size, you
just open the Attributes inspector and edit the Font option. Your end result should look like
this:

Your Exercise

82

Figure 5-19. The expected app layout

In this chapter, we went through the basics of Auto Layout. It's just the basics because I don't
want to scare you away from learning auto layout. As we dig deeper and create a real app, we'll
continue to explore some other features of auto layout.

Most of the beginners (and even some experienced iOS programmers) avoid using auto layout
because it looks confusing. If you throughly understand what I have covered in this chapter,
you're on your way to becoming a competent iOS developer. The original iPhone was launched
in 2007. Over these years, there have been tons of changes and advancements in the area of
iOS development. Unlike the good old days when your apps just needed to run on a 3.5-inch,
non-retina device, your apps now have to cater to various screen resolution and sizes. This is
why I devoted a whole chapter to Auto Layout.

So take some time to digest the materials.

For reference, you can download the complete Xcode project from
https://www.appcoda.com/resources/swift3/HelloWorldAutoLayout.zip.

Summary

83

https://www.appcoda.com/resources/swift3/HelloWorldAutoLayout.zip

To the user, the interface is the product.

- Aza Raskin

I have given you a brief overview of auto layout. The examples that we have worked on were
pretty easy. However, as your app UI becomes more complex, you will find it more difficult to
define the layout constraints for all UI objects. Starting from iOS 9, Apple introduced a
powerful feature called Stack Views that would make our developers' life a little bit simpler.

Chapter 6
Designing UI Using Stack Views

84

You no longer need to define auto layout constraints for every UI objects. Stack views will take
care of most of that.

In this chapter, we will continue to focus on discussing UI design with Interface Builder. I will
teach you how to build a more comprehensive UI, which you may come across in a real-world
application. You will learn how to:

1. Use stack views to lay out user interfaces.
2. Use image views to display images.
3. Manage images using the built-in asset catalog.
4. Adapt stack views using Size Classes.

On top of the above, we will explore more about auto layout. You'll be amazed how much you
can get done without writing a line of code.

First things first, what is a stack view? The stack view provides a streamlined interface for
laying out a collection of views in either a column or a row. In Keynote or Microsoft
Powerpoint, you can group multiple objects together so that they can be moved or resized as a
single object. Stack views offer a very similar feature. You can embed multiple UI objects into
one by using stack views. In most cases, for views embedded in a stack view, you no longer
need to define auto layout constraints.

Quick note: For views embedded in a stack view, they are usually known as
arranged views.

The stack view manages the layout of its subviews and automatically applies layout constrants
for you. That means, the subviews are ready to adapt to different screen sizes. Furthermore,
you can embed a stack view in another stack view to build more complex user interfaces.
Sounds cool, right?

Don’t get me wrong. It doesn’t mean you do not need to deal with auto layout. You still need to
define the layout constrants for the stack views. It just saves you time from creating constraints
for every UI element and makes it super easy to add/remove views from the layout.

What is a Stack View

85

Figure 6-1. Horizontal Stack View (left) / Vertical Stack View (right)

Xcode 8 provides two ways to use stack view. You can drag a Stack View (horizontal / vertical)
from the Object library, and put it right into the storyboard. You then drag and drop view
objects such as labels, buttons, image views into the stack view. Alternatively, you can use the
Stack option in the auto layout bar. For this approach, you select two or more view objects, and
then choose the Stack option. Interface Builder then embeds the objects into a stack view and
resizes it automatically. If you still have no ideas about how to use a stack view, no worries.
We’ll go through both approaches in this chapter. Just read on and you’ll understand what I
mean in a minute.

Let’s first take a look at the demo app we’re going to build. I will show you how to layout a
welcome screen like this using stack views:

The Sample App

86

Figure 6-2. The sample app

You can create the same UI without using stack views. But you will soon see how stack views
completely change the way how you layout user interfaces. Again, there is no coding in this
chapter. We will just focus on using Interface Builder to building an adaptive user interface.
This is a crucial skill you will need in app development.

Now fire up Xcode and create a new Xcode project. Choose Application (under iOS) > "Single
View Application" and click "Next". You can simply fill in the project options as follows:

Product Name: StackViewDemo – This is the name of your app.
Team: Just leave it as it is.
Organization Name: AppCoda – It's the name of your organization.
Organization Identifier: com.appcoda – It's actually the domain name written the
other way round. If you have a domain, you can use your own domain * name. Otherwise,
you may use "com.appcoda" or just fill in "edu.self".
Bundle Identifier: com.appcoda.StackViewDemo - It's a unique identifier of your

Creating a New Project

87

app, which is used during app submission. You do not need to fill in this option. Xcode
automatically generates it for you.
Language: Swift – We'll use Swift to develop the project.
Devices: Universal – Select "Universal" for this project. A universal app is a single app
that is optimized for iPhone, iPod touch, and iPad devices. For this demo, we'll design a
user interface that works on all devices.
Use Core Data: [unchecked] – Do not select this option. You do not need Core Data
for this simple project.
Include Unit Tests: [unchecked] – Do not select this option. You do not need unit
tests for this simple project.
Include UI Tests: [unchecked] – Do not select this option. You do not need UI tests
for this simple project.

Click "Next" to continue. Xcode then asks you where to save the StackViewDemo project. Pick
a folder on your Mac. Click "Create" to continue.

As you may notice, the sample app shows three images. The question is how can you bundle
images in Xcode projects?

In each Xcode project, it includes an asset catalog (i.e. Assets.xcassets) for managing images
and icons that are used by your app. Go to the project navigator and select the
 Assets.xcassets folder. By default, it is empty with a blank AppIcon set. We are not going to
talk about app icons in this chapter, but will revisit it after building a real-world app.

Figure 6-3. Asset Catalog

Adding Images to the Xcode Project

88

Now download this image set (https://www.appcoda.com/resources/swift3/stackviewdemo-
images.zip) and unzip it on your Mac. The zipped archive contains a total of 9 image files, but it
actually includes three different t-shirt images. Each one of them comes with three different
resolutions. Here is an example:

user1.png
user1@2x.png
user1@3x.png

When developing an iOS app, it is recommended to prepare three versions of an image. The
one with @3x suffix, which has the highest resolution, is for iPhone 6 Plus. The one with @2x
suffix is for iPhone 4/4s/5/5s/6, while the one without the @ suffix is for older devices with
non-Retina display (e.g. iPad 2).

Credit: The images are provided by usersinsights.com.

To add the images to the asset catalog, all you need to do is drag the images from Finder, and
drop them into the set list or set viewer.

89

https://www.appcoda.com/resources/swift3/stackviewdemo-images.zip
http://pixeden.com

Once you add the images to the asset catalog, the set view automatically organizes the images
into different wells. Later, to use the image, you just need to use the set name of a particular
image (e.g. user1). You can omit the file extension and you don't have to worry about which
version (@2x/@3x) of the image to use. All these are handled by iOS accordingly.

Now that you've bundled the necessary images in the project, let's move onto stack views. First,
open Main.storyboard . We'll start with the layout of these two labels.

Stack view can arrange multiple views (known as arranged views) in both vertical and
horizontal layouts. So first, you have to decide whether you want to use a vertical or horizontal
stack view. The title and subtitle labels are arranged vertically. Therefore, vertical stack view is
a suitable choice.

From the Object library, drag a Vertical Stack View object to the view controller in the
storyboard.

Layout the Title Labels with Stack Views

90

Next, drag a label from the Object library and put it right into the stack view. Once you drop
the label into the stack view, the stack view automatically embeds it and resizes itself to fit the
label. Double click the label and change the title to "Instant Developer". In the Attributes
inspector, increase the font size to 40 points, and font style to medium. Optionally, you can
change the color to red.

Now, drag another label from the Object library to the stack view. As soon as you release the
label, the stack view embeds the new label and arranges the two labels vertically like this:

91

Edit the title of the new label and change it to "Get help from experts in 15 minutes".

Currently, both labels are aligned to the left of the stack view. To change its alignment and
appearance, you can modify the built-in properties of the stack view. Select the stack view and
you can find its properties in the Attributes inspector.

Figure 6-9. Sample properties of a stack view

As a sidenote, if you have any problems selecting the stack view, you can hold the shift key and
right click the stack view. Interface Builder will then show you a shortcut menu for selection.

92

Figure 6-10. Shortcut menu for selection

Let's briefly talk about each property of the stack view:

The axis option indicates whether the arranged views should be layout vertically or
horizontally. By changing it from vertical to horizontal, you can turn the existing stack
view to a horizontal stack view.

The alignment option controls how the arranged views are aligned. For example, if it is set
to Leading, the stack view aligns the leading edge (i.e. left) of its arranged views along its
leading edge.

The distribution option defines the size and position of the arranged views. By default, it is
set to Fill. In this case, the stack view tries its best to fit all subview in its available space. If
it is set to Fill Equally, the vertical stack view distributes both labels equally so that they
are all the same size along the vertical axis.

Figure 6-11 shows some sample layouts of different properties.

93

Figure 6-11. A quick demo of the stack view's properties

For our demo app, we just need to change the Alignment option from Fill to Center and keep
other options intact. This should center both labels.

Before moving onto the next section, make sure you position the stack view correctly. This
would help you easier for you to follow the rest of the materials. You can select the stack view
and go to the Size inspector. Ensure you set the value of X to 28 and Y to 70 .

Figure 6-12. Verify the position of the stack view

94

At the very beginning of this tutorial, I mentioned that there are two ways to use stack views.
Earlier, you added a stack view from the object library. Now I will show you another approach.

We're going to lay out the three user images. In iOS, we use image views to display images.
From the Object library, look for the image view object, and drag it into the view. Once you
added the image view, select the Attributes inspector. The image option already loads the
available images from the asset catalog. Simply set it to user1 , and resize it to make it smaller.

Figure 6-13. Adding an image view for displaying images

Repeat the procedures to add two more image views, and place them next to each other. Set
the image of the second and third image view to user2 and user3 respectively. Your layout
should look like this:

Layout the Images Using the Stack Button

95

Figure 6-14. Assign the images to the image views

I want to group these three image views together using a stack view, so it is easier to manage.
However, we will use an alternative approach to create the stack view.

Hold the command key and click the three image view to select them. Then click the Stack
button in the layout bar. Interface Builder automatically embeds the image views in a
horizontal stack view.

Figure 6-15. Group the image views in a horizontal stack view

To add some spacing between the image views, select the stack view and set the spacing to 10 .
Also change the Distribution option from Fill to Fill Equally.

96

Quick note: It seems that the stack view has already distributed the image
views equally. Why do we need to change the distribution to Fill Equally?
Remember that you're now designing the UI for all screen sizes. If you do not
explicitly set the distribution to Fill Equally, iOS will layout the image
views using Fill distribution policy. It may not look good on other screen
sizes.

Now you have two stack views: one for the labels, and the other for the image views. If you
refer to the final layout (see figure 6-2), these two stack views can actually be combined
together for easier management. One great thing about stack views is that you can nest
multiple stack views together.

To do that, select both stack views through the document outline view. Then click the Stack
button to embed both stack views in a vertical stack view.

Figure 6-16. Nested stack views

Cool, right? So far the UI looks good on iPhone 6/6s. But if you preview the UI on other
devices, it doesn't look as expected. The reason is that we haven't defined the layout

97

constraints for the stack views. As I mentioned at the very beginning of the chapter, stack
views only save you from defining the layout constraints of the arranged views. You still need
to create layout constraints for the stack views.

For the stack view, we will define the following layout constraints:

Set a spacing constaint between itself and the top layout guide, such that it is 70 points
away from the top layout guide.
Set a spacing constraint between left side of the stack view and the left margin of the view,
such that there is no space (i.e. 0 point) between them.
Set a spacing constraint between right side of the stack view and the right margin of the
view, such that there is no space (i.e. 0 point) between them.

Now click the Pin button in the layout button. Set the space constraints of the top, left and
right side to 70, 0 and 0 respectively. When the constraint is enabled, it is indicated by a solid
red bar. Then click the "Add 3 Constraints" button to add the constraints.

Adding Layout Constraints for the Stack View

98

Figure 6-17. Adding multiple constraints using the Pin button

Once you added the constraints, Interface Builder indicates the stack view is not correctly
positioned. You can click the issue indicator in the document outline view, followed by clicking
another yellow indicator in the issue view. When prompted, select Update frames and click Fix
Misplacement.

Interface Builder automatically re-positions the stack view to the correct position that
conforms to your layout constraints.

99

Figure 6-18. Resolving the auto layout issues

Now try to preview the interface on other devices. They should look pretty good. However, you
may notice two issues:

The Instant Developer label is truncated for iPhone SE (4-inch) and 4s (3.5-inch).
The aspect ratio of the images is not retained. All images appear horizontally stretched.
When you view the UI on iPad, it looks especially weird.

Figure 6-19. Previewing the UI on iPhone SE and iPad

100

So how can we fix the issues?

For the first issue, it is quite obvious that we can decrease font size of the label. Xcode provides
an automatic way to adjust the font size on the fly. Now select the Instant Developer label, and
go to the Attributes inspector. Set the Autoshrink option to Minimum Font Size, and the value
to 20 .

Figure 6-20. Changing the autoshrink option of the label

By doing so, you tell Xcode (or iOS) to determine the suitable font size for the label such that it
can perfectly be displayed.

For the second issue about image scaling, we have to define one more constraint and ask the
stack view to retain the aspect ratio, regardless of the screen sizes. In the document outline
view, control-drag horizontally on the stack view (containing the image views). In the shortcut
menu, select Aspect Ratio .

101

Figure 6-21. Control-drag from the stack view to itself to add a constraint

Now choose iPhone SE/4s or iPad in the configuration bar to test out the UI. The layout should
look much better.

There is a label right below the images that we haven't added yet. I intentionally left it out so
that I can show you how easy you can add an object to an existing stack view.

In the Object library, drag a label object to the stack view holding the other two stack views.
You will see a blue line that indicates the position of the insertion point.

Adding a Label Below the Images

102

Figure 6-22. Adding a new label to an existing stack view

Next, select the new label. Go to the Attributes inspector, set the text to the following:

Need help with your coding problems? We’ll find you the right developer who can help you in
15 minutes.

Quick tip: When you type in the text field, you can press option+return to add
a line break.

Furthermore, set the alignment option to center, and lines to 0 to show multiple lines.

Both labels are too close the images. To add some space between the text and images, select the
stack view and change the spacing from 0 to 10 in the Attributes inspector.

103

Figure 6-23. Adding some space between the labels and images

Now the UI looks pretty good on all devices. As you can see, stack views save you from defining
constraints for the new label. It just inherits the constraints that you have defined earlier.

We haven’t finished yet. Let's continue to layout the two buttons at the bottom of the screen.

First, drag a button from the Object library to the view. Double click the button to name it
"Sign in". In the Attributes inspector, change its background color to red and text color to
white. In the Size inspector, set the width to 200. Next, drag another button to the view and
name it "Sign up with Facebook". In the Attributes inspector, change its background color to
red and text color to white. In the Size inspector, set the width to 200.

Layout the Buttons Using a Stack View

104

Figure 6-24. Adding two buttons to the view

Again, you do not need to set the layout constraints for these labels. Let the stack view to do
the magic for you. Hold the command key and select both buttons. Then click the Stack button
in the layout bar to group them in a vertical stack view. Next, center the stack view
horizontally. To add a space between the buttons, select the stack view. In the Attributes
inspector, set the value of spacing to 10 .

Similarly, we have to define layout constraints for this stack view so that it is positioned close
to the bottom of the view. Here are the layout constraints we're going to define:

Center the stack view horizontally, with respect to the container view.
Set a spacing constraint so that there is a space between the stack view and the Bottom
Layout Guide.

Select the stack view that you just created. Click the Align button in the layout bar. Check the
Horizontally in Container option and click Add 1 Constraint.

105

Figure 6-25. Adding a new constraint to center the stack view horizontally

Next, to add a spacing constraint, click the Pin button and set the value of the bottom side to
 20 . Make sure the bar is in solid red. Click Add 1 Constraint to add the constraint.

Figure 6-26. Adding a spacing constraint to the stack view

106

One thing you may notice is that the button is narrower than expected. As you embed the
buttons in the stack view, they are resized to its intrinsic size. If you want to set the width to
200, you will need to add a width constraint to the stack view. In the document view, control-
drag from the stack view to itself and choose Width to add the constraint.

Figure 6-27. Adding the width constraint using control-drag

To change the width to 200 points, select the width constraint of the stack view in the
document outline view. In the Attributes inspector, change the constant to 200 . The stack
view now has a fixed width of 200 points.

Figure 6-28. Editing the width constraint

107

It's time to test the app again. You can preview the UI in Interface Builder or run the project on
different devices. Your UI should look great on all devices.

Figure 6-29. Previewing the UI on iPhone and iPad

Now that you've already built a nice UI using stack views, have you tested the layout in
landscape orientation? If you turn the iPhone simulator sideway, the UI in landscape
orientation looks like this:

Adapting Stack Views Using Size Classes

108

Figure 6-30. The app UI in landscape orientation on iPhone (left) and iPad (right)

It still looks pretty good. To make it look even better, I want to decrease the spacing between
the Top Layout Guide and the upper stack view (holding both labels and image views). But this
changes only applies to iPhones in landscape orientation.

As you know, we can adjust the spacing by changing the constant of the spacing constraints.
The question is: how can you apply the change for iPhones in landscape orientation only?

This leads to a new UI design concept known as Adaptive Layout, introduced since iOS 8.
With adaptive layout, your apps can adapt their UI to a particular device and device
orientation. To achieve adaptive layout, Apple introduced a new concept, called Size Classes.
This is probably the most important aspect which makes adaptive layout possible. Size classes
are an abstraction of how a device is categorized depending on its screen size and orientation.
You can use both size classes and auto layout together to design adaptive user interfaces.

A size class identifies a relative amount of display space for both vertical (height) and
horizontal (width) dimensions. There are two types of size classes: regular and compact. A
regular size class denotes a large amount of screen space, while a compact size class denotes a
smaller amount of screen space.

109

By describing each display dimension using a size class, this will result in four abstract devices:
Regular width-Regular Height, Regular width-Compact Height, Compact width-Regular
Height and Compact width-Compact Height.

The table below shows the iOS devices and their corresponding size classes:

To characterize a display environment, you must specify both a horizontal size class and
vertical size class. For instance, an iPad has a regular horizontal (width) size class and a regular
vertical (height) size class. In our case, we want to provide layout specializations for iPhones in
landscape orientation. In other words, here are the two size classes we have to deal with:

Compact width-Compact height
Regular width-Compact height

You don't need to remember the above table. In Interface Builder, you can find out the current
size class in the configuration bar. For example, when iPhone 6s is selected, it shows "View as:
iPhone 6s (wC hC)". "wC hC" means compact width and compact height.

With an understanding of size classes, now go back to the Main.storyboard . In the
configuration bar, set the device to landscape orientation. Next, select the spacing constraint
between the Top Layout Guide and the upper stack view. In the Attributes inspector, click the
+ button next to the Constant option. Select Any Width > Compact height > Any Gamut, and
then set the value of this size class to 0 .

110

Quick note: Here, any width includes both compact and regular width.

Figure 6-32. Add a Size-Class-specific constraint

By doing that, the space between the stack view and Top Layout Guide will be minimized when
your iPhone is turned sideway. Preview the UI in Interface Builder or run the project on
various iOS devices to see the result.

If you have run the app on iPhone 6 Plus in landscape orientation, the text under the images is
not fully displayed. You can define additional constraints to resolve the issue. But a simple
solution is to hide the text for iPhone in landscape orientation. There are multiple ways to hide
a label or UI objects. You can write code to achieve that. Here I want to show you how to hide
the label through auto layout instead.

In brief, we will define a height constraint for the "Need help with your …" label. By setting the
height to zero, the label will disappear. We will only apply this constraint for a specific size
class so the label will disappear when the iPhone device is in landscape orientation.

Let's see how to implement it.

111

Now go back to Interface Builder and select the "Need help with your …" label in the document
outline view. Control drag from the label to itself and choose Height to add the constraint.
Then set the constant of the height constraint to 0 .

Figure 6-33. Adding a height constraint for the label

When you set the constant to zero, the label diminishes. Now that this height constraint
applies to all devices, how can we activate it for iPhone in landscape orientation only?

For each constraint, you should find a Installed checkbox in the Attributes inspector. The
constraint is active when the checkbox is checked. Now deselect the Installed option, the label
will appear again.

To enable this constraint for iPhone in landscape orientation only, click the + button and select
Any Width > Compact height > Any Gamut. Make sure the Installed option for hC is checked.

112

Figure 6-34. Adding customization for the height constraint

This will hide the label for that particular size class. In other words, it will not display the
"Need help with your …" label on all iPhone devices in landscape orientation. But don't trust
my words; try it out yourself and test the app on multiple devices.

To help you better understand how auto layout and size classes work, let's have another simple
exercise. You are required to update some constraints and create another layout specialization
for iPhone/iPad. Here are the requirements:

For all devices, change the width of the "Sign up" and "Log in with Facebook" button from
200 to 300 points.
For iPhone 6s and older iPhone (in portrait orientation), the font size of the "Need help
with …" label should be set to 15 points.
For iPad (in portrait orientation), increase the spacing between the images and the labels.
Set it to 30 points instead of 10 points.

Your Exercise

113

Figure 6-35. UI requirements for your exercise

Hint: When you click the + button to create constraint customization, it shows
the current size class (e.g. Compact Width | Regular Height | Any Gamut) as the
first option. This is the size class that you need to provide customization.

Congratulations! You have finished the chapter and learned how to build an adaptive UI using
stack views and size classes.

Stack views streamline the way you build user interfaces on iOS, with very minimal
constraints. One question you may have is: when should you use stack views? Apple's
engineers recommended developers to adopt stack views first, and then only when you need to
actually use raw constraints. So throughout this book, we will design the user interfaces using
stack views.

Summary

114

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/StackViewDemo.zip. For the solution to the
exercise, you can download it from
http://www.appcoda.com/resources/swift3/StackViewExercise.zip.

Got question? Join our Facebook group (https://www.facebook.com/groups/appcoda) to
discuss with it with other developers.

115

http://www.appcoda.com/resources/swift3/StackViewDemo.zip
http://www.appcoda.com/resources/swift3/StackViewExercise.zip
https://www.facebook.com/groups/appcoda

If a picture is worth 1000 words, a prototype is worth 1000 meetings.

Chapter 7
Introduction to Prototyping

116

- @IDEO

Now that you have some basic concepts of iOS programming and Interface Builder. As I always
said, there is no better way to learn app development than actually creating an app. We will
create a real app together in this book. However, we will not rush out to write code. Instead we
will build a prototype first.

Every time I mentioned prototype to beginners, two questions pop up:

What's a prototype?
Why prototyping?

A prototype is an early model of a product used for testing a concept or visualizing an idea.
Prototyping has been used in many industries. Before constructing a building, an architect
needs to draw a plan of the building and make a model of the building. An aircraft company
builds a prototype of an aircraft to test any design flaws before building and assembling an
aeroplane. Software companies also build software prototypes to explore an idea before
creating the actual application. In the context of app development, a prototype can be an early
sample of an app which is not fully functional and contains basic UI or even sketches.

Prototyping is the process of developing a prototype and offers many advantages. First, it helps
you visualize your idea and better communicate your idea to your team members and users. If
you're the only developer and the only user, you may not need prototyping as you define the
requirements and how the app works. Everything is in your head and you know exactly what
you want and what you need to build.

However, app development rarely happens like that. You may work in a team of programmers
or build an app for a client. Even if you're an indie developer, you're probably developing an
app that targets for a particular group of users or all users around the globe. You have to find
some ways to communicate your idea or test your idea. You can explain your idea in words, but
no one wants to see another boring presentation of ideas. There is no better way than showing
your users a working demo.

By creating a prototype, you can involve your users earlier and they will better understand how
the app works and figure out what's missing at the early development stage.

117

Prototyping also allows you to test an idea without building an actual app. You can show your
prototype to your potential users and get early feedback before an app is built. This saves you
both time and money. Figure 7-1 illustrates the benefits of prototyping.

Figure 7-1. Prototyping saves you money and time

Now that you have an app idea, but how can you create a prototype for your app?

A prototype can take many forms. It can be paper-based or digital-based. I always start from

Sketching Your App Ideas on Paper

118

hand drawn concepts and highly recommend you use paper to sketch out your app design. It's
the simplest way to create an app prototype. And paper is still the best way to quickly record all
the ideas in your head.

For example, I have an idea for building a food app that allows me to save my favourite
restaurants. While Yelp is good, I want to build an app for me to create a personal food guide.
The app will have these features:

List the favorite restaurant at home screen
Create a restaurant record and import a photo from photo album as the restaurant image
Save the restaurant locally and share it with other foodies in the world
Show the location of a restaurant on maps
View restaurants shared by other foodies

I think people may like this idea too. In order to test my idea, I first draw my design on paper.
Some people said they're not good at drawing. You don't have to be an artist to draw your app
design. The sketches that are shown in figure 7-2 are good enough to visualize your ideas and
explain your app to your friends.

Figure 7-2. Draw your app on paper

You can illustrate your app on paper. But wouldn't it be great if you can create some screen
transitions so that your potential users can interact with the app prototype? There are a

Prototyping Your App Using POP

119

number of tools for developers to prototype their apps. POP app, Marvel, Proto.io, Flinto,
Principle and InvisionApp are some of the examples. I will use POP to create the app prototype
but the other tools work pretty much the same.

POP app turns your hand drawings into a working prototype. It lets you capture your drawings
using camera or import them from your photo album. To interact with the images, the app
offers various transitions for you to link your screens up. You'll see what I mean in a while.
First, install POP app on your iPhone and download the app prototype from
http://www.appcoda.com/resources/swift3/FoodPinSketches.zip. You can unzip the images
and import them to your iPhone.

POP app is very easy to use. When you launch it the first time, you will see your project listing.
Click the + icon to create a new project. Give your project a name (e.g. Food Pin). Select the
project when it's created. By default, the project is empty. Now click the camera icon and use
camera option to capture your sketches. Alternatively, you can import the sketches from your
photo album. Figure 7-3 shows a sample POP project.

Figure 7-3. Capture your sketches using camera and create a POP project

120

https://popapp.in/
https://marvelapp.com
https://proto.io
https://www.flinto.com
http://principleformac.com
http://www.invisionapp.com
http://www.appcoda.com/resources/swift3/FoodPinSketches.zip

Start with the home screen of the app and define the screen transition. POP lets you highlight a
specific area of the image and specify the target page when that area is tapped. Then define the
transition type including fade, next, back, rise and dismiss. Say, for the home screen, the app
should navigate to the detail screen when tapping any of the records. So we highlight the
records, set the transition to “next” and link it to the detail screen. Once you have made the
change, tap the Play button to interact with the prototype. The app will transit to the detail
screen when any of the records are tapped.

Figure 7-4. Defining screen transitions in POP

You just need to repeat the procedures to define the rest of the screen transitions. When the
prototype is finished, you can share it with your team members and potential users using the
Share option. Your users can try out the prototype using a web link:

https://popapp.in/projects/542b9b22fdaf026132c03b74/preview

121

https://popapp.in/projects/542b9b22fdaf026132c03b74/preview

This is how you lay out your idea and that allows you to solicit users' feedback as early as
possible. If your users don't like the idea or the screen design, this is not a big deal. They're just
sketches. We can throw away the sketches and re-create another set. Or you can fine tune some
of the areas that don't work and make the prototype better. As you can see, this saves you time
and money.

As said before, an app prototype can take many forms. Hand drawing is one of the many ways
to create a prototype. If you're a designer, you may use Photoshop or Sketch to design an app
UI and then use an app prototyping tool like Flinto to create the app prototype.

I am a big fan of Sketch (https://www.sketchapp.com). Even if I am not an app designer, the
tool allows me easily turn my paper sketches into a professional app design. The Sketch app
comes with iOS app template to help you layout your UI. And, you can find tons of free/paid
Sketch resources online (http://www.sketchappsources.com) that can elevate your app design.
Sketch also has a companion iPhone app so you can easily view the design on a real device.
However, it doesn't come with a built-in prototyping feature. What I usually do is export the
app screens from Sketch and import them to other prototyping tools (e.g. InvisionApp) to
build a working prototype.

Popular Prototyping Tools

Sketch

122

https://www.flinto.com
https://www.sketchapp.com
http://www.sketchappsources.com

Figure 7-5. Designing the app UI using Sketch

Note: If you want to learn more about Sketch, I highly recommend you to check
out Meng To's Design+Code book (https://designcode.io).

Earlier this year, Adobe launched a Sketch competitor called Adobe XD (short for Experience
Design) for UI design. The company claimed it as an all-in-one tool for both web and mobile
app design projects. At the time of writing, it is still in beta and the preview version is free for
download.

If you've used Photoshop before, you will find Adobe XD a lot easier to use. The tool has two
modes: design and prototype. In the Design mode, you can design the app UI with a set of
layout tools. At a certain point, you can switch to the Prototype mode to build an interactive
prototype with the app screens you just designed. It is pretty easy to connect one screen with
the other. By clicking and dragging, you can create an app prototype with simple animations to
demonstrate the workflow of your app.

Adobe Experience Design

123

Figure 7-6. Prototyping the FoodPin App using Adobe XD

I have built a prototype demo, which is the app we're going to build in this book, using Adobe
XD. You can download the project file from
http://www.appcoda.com/resources/swift3/FoodPinEn.zip.

Keynote! Are you kidding me? You heard me right. Apple's Keynote can also be used to make
quick prototypes. Actually Apple's engineers mentioned in WWDC 2016 that they used the
presentation tool to create prototype for their app projects.

Keynote shouldn't be new to you if you've used it for creating presentations. The same set of
drawing tools built in Keynote allow you to design a simple app UI. Keynotpia offers mock
templates to streamline your sketches. Figure 7-7 shows a sample screen created using
Keynote.

Keynote

124

http://www.appcoda.com/resources/swift3/FoodPinEn.zip
http://keynotopia.com

Figure 7-7. Design an app prototype using Keynote

Not only can you design the app UI, interestingly, Keynote makes it very easy to animate the
static mockups. The magic move transition lets you animate the screen transition to replicate
the feel of native apps. I will not go into the details about how you can create a working
prototyping with Keynote. If you want to learn more about how to prototype using Keynote,
you can check out this article (http://webdesign.tutsplus.com/tutorials/how-to-demo-an-ios-
prototype-in-keynote--cms-22279)

Prototyping is a common process in app development. It allows you to quickly build something
workable and show users. Prototyping is used to test an idea and get feedback as early as
possible. If you're building an app for a client, building a prototype lets your client clearly
understand the app design.

Summary

125

http://webdesign.tutsplus.com/tutorials/how-to-demo-an-ios-prototype-in-keynote--cms-22279

So, no matter if you are a solo developer or a member of a development team, I want you to
start prototyping today. Rather than jump right in to build your app, lay out your idea on paper
first and build a simple demo using POP or other prototyping tools. This will save you a lot of
time and money creating a product with no appeal.

126

That's been one of my mantras - Focus and Simplicity. Simple can be harder than
complex: You have to work hard to get your thinking clean to make it simple. But it's
worth it in the end because once you get there, you can move mountains.

- Steve Jobs

Now that you have a basic understanding of prototyping and our demo app, we'll work on
something more interesting and build a simple table-based app using UITableView in this

Chapter 8
Creating a Simple Table Based App

127

chapter. Once you master the technique and the table view customization (to be discussed in
the next chapter), we'll start to build the Food Pin app.

First of all, what exactly is a table view in an iPhone app? A table view is one of the most
common UI elements in iOS apps. Most apps (except games), in some ways, make use of table
view to display content. The best example is the built-in Phone app. Your contacts are
displayed in a table view. Another example is the Mail app. It uses table view to display your
mail boxes and emails. Not only designed for listing textual data, table view allows you to
present the data in the form of images. The TED, Google+ and Airbnb are also good examples.
Figure 8-1 displays a few more sample table-based apps. Though they look different, all in
some ways utilize a table view.

Figure 8-1. Sample table-based apps (left: Product Hunt, middle: TED, right: VSCO)

Don’t just read the book. If you’re serious about learning iOS programming, stop
reading. Open your Xcode and code! This is the best way to learn programming.

Creating a SimpleTable Project

128

Let's get started and create a simple app. The app is really simple. We'll just display a list of
restaurants in a plain table view. We'll polish it in the next chapter. If you haven't fired up
Xcode, launch it, and create a new project using the "Single View application" template.

Figure 8-2. Xcode Project Template

Click "Next" to continue. Again, fill in all the required options for the Xcode project:

Product Name: SimpleTable – This is the name of your app.
Team: Just leave it as it is.
Organization Name: AppCoda – It's the name of your organization.
Organization Identifier: com.appcoda – It's actually the domain name written the
other way round. If you have a domain, you can use your own domain * name. Otherwise,

129

you may use "com.appcoda" or just fill in "edu.self".
Bundle Identifier: com.appcoda.SimpleTable - This field should be automatically
generated by Xcode.
Language: Swift – We'll use Swift to develop the project.
Devices: iPhone – Select iPhone for this project.
Use Core Data: [unchecked] – Do not select this option. You do not need Core Data
for this simple project.
Include Unit Tests: [unchecked] – Do not select this option. You do not need unit
tests for this simple project.
Include UI Tests: [unchecked] – Do not select this option. You do not need UI tests
for this simple project.

Click "Next" to continue. Xcode then asks you where to save the SimpleTable project. Pick a
folder on your Mac. Click "Create" to continue.

To present data in a table in an iOS app, all you need to use is the table view object. First, select
 Main.storyboard to switch to the Interface Builder editor. In the Object library, look for the
 Table View object and drag it into the view.

Design the User Interface

130

Figure 8-3. Drag a table view from the Object library to the View

Resize the table view to fit the whole view. Next, go to the Attributes inspector (if it doesn't
appear in your Xcode, choose View > Utilities > Show Attributes Inspector), change the
number of Prototype Cells from 0 to 1 . A prototype cell will appear in the table view.

Prototype cells allow you to easily design the layout of your table view cell. You can think of it
as a cell template that you can reuse it in all the table cells.

By default, a prototype cell comes with several standard cell styles including basic, right detail,
left detail and subtitle. You can create your cell design or simply choose from the default style.
In this example, we will use the basic style. For cell customizations, I will leave it to the next
chapter.

Select the cell and then open the Attributes inspector. Change the cell style to Basic. This style
is good enough to display a cell with both text and image. Additionally, set the identifier to
Cell. This is a unique key for identifying the prototype cell. We'll use it later when writing code.

131

Figure 8-4. Prototype Cell in table view using Basic style

Before moving on, try to run your app on iPhone 6 Plus. The Simulator screen should look like
the one in figure 8-5.

Run Your App to Have a Quick Test

132

Figure 8-5. A blank table view on iPhone 6 Plus

Easy, right? You have created the table view for your app. Meanwhile, it doesn't display any
data. If you take a closer look at the table view, it is not perfectly stretched to take up the whole
screen. I believe you should know the reason if you thoroughly understand auto layout.

So far we haven't defined any layout constraints for the table view. This is why it is not
displayed properly on every device. Now select the table view in Interface Builder, click the Pin
button in the layout bar. Set the spacing of the top, left, right and bottom side to 0 .

133

Figure 8-6. Adding layout constraint to the table view

Make sure the bars are in solid red and the Constrain to margins option is unchecked. Then
click the Add 4 Constraints button to add the constraints.

Here we define 4 spacing constraints for each side of the table view. Here, the Constrain to
margins option is unchecked. In this case, the spacing constraints will be relative to the edge of
the view instead of the margin. This ensures that all sides of the table view will stretch to the
edge of the view. In other words, your table view will automatically resize to fit all screen sizes.

You can run the project again. The table view should now support all screen sizes. With the UI
design ready, let's move onto the core part and write some code to insert the table data.

I mentioned before that we deal with foundation classes provided by the iOS SDK. These
classes are organized into what-so-called frameworks. The UIKit framework is one of the most
commonly used frameworks.

UITableView and its Protocols

134

It provides classes to construct and manage your app's user interface. All objects listed in the
Object library of Interface Builder are provided by the framework. The Button object you used
in the HelloWorld app, and the Table View object we're now working on are from the UIKit
framework. While we use the term Table View, the actual class is UITableView. Simply put,
every UI component in the Object libary has a corresponding class. You can click any item in
the Object Library and reveal the actual class name in the pop-over menu.

Figure 8-7. Click the object in the Object library to reveal the actual class name in UIKit
framework

I intentionally leave out the discussion of classes and methods to later chapters. If you
have no ideas what a class is, don't worry. Just think of it as a code template. I will
explain it to you in later chapters.

Now that you have an idea about the relationship between Table View and UITableView. We'll
write some code to insert the table data. Select ViewController.swift in the project navigator
to open the file in the editor pane. Append , UITableViewDataSource, UITableViewDelegate
after UIViewController to adopt the protocols.

As soon as you insert the code after UIViewController , Xcode detects an error. The red
exclamation mark indicates that there is a problem. Click the little exclamation mark on the
left side of the editor. Xcode will highlight the line of code, and display a message telling you
the details of the issue. The message is helpful telling the cause of the problem, but it doesn't
show you the solution.

135

Figure 8-8. Implementing UITableViewDataSource and UITableViewDelegate protocols

So, what does it mean by "Type ViewController does not conform to protocol
UITableViewDataSource"?

The UITableViewDelegate and UITableViewDataSource are known as protocols in Swift. To
display data in a table view, we have to conform to a set of requirements, defined in the
protocols. Here, the ViewController class is the one that adopts the protocol, and implements
all the mandatory methods.

It may be confusing. What are these protocols? Why protocols?

Well, let's say you're starting a new business. You hire a graphic designer to design your
company logo. He's a skilled designer capable of creating any kind of logo. But he can't start
the logo design right away. In the least, you need to provide him with some requirements such
as company name, color preference, business nature before he can create a logo. However,
you're busy. You delegate the task to your personal assistant, and let her deal with the
designer, providing him with the logo requirements.

In iOS programming, the UITableView class is just like the graphic designer. It's flexible
enough to display various kinds of data (e.g. image, text) in table form. You can use it to
display a list of countries or contact names. Or in our project, we'll be presenting a list of
restaurants with thumbnails.

But before UITableView can display the data for you, it requires someone to provide some
basic information like:

136

how many rows do you want to display in the table view?
what is the table data? For example, what do you want to display for row 2? What do you
want to display in row 5?

That "someone" is known as delegate object. In the above analogy, the personal assistant is the
delegate object. In iOS programming, it also applies the concept of delegation usually known as
delegation pattern. An object relies on another object to perform a specific task. In our project,
the ViewController is the delegate that provides the table data. Figure 8-9 illustrates the
relationship of UITableView, the protocols and the delegate object.

Figure 8-9. The relationship of UITableView, the protocols and the delegate object

So how do you tell UITableView what data to display? The UITableViewDataSource protocol is
the key. It's the link between your data and the table view. The protocol defines a list of

137

methods that you have to adopt. Here are the two required methods for the
 UITableViewDataSource protocol:

tableView(_:numberOfRowsInSection:)
tableView(_:cellForRowAtIndexPath:)

All you need is to provide an object that implements the above methods, so that UITableView
knows the total number of rows to display and the data for each row. The protocol also defines
some optional methods that we'll not discuss it here.

The UITableViewDelegate protocol, on the other hand, deals with the appearance of the
UITableView. All methods defined in the protocols are optional. They let you manage the
height of a table row, configure section headings and footers, re-order table cells, etc. We will
not change any of these methods in this example. We will leave that for a later chapter.

With some basic knowledge of protocols, let's continue to code the app. Select
 ViewController.swift and declare a variable for holding the table data. Name the variable
 restaurantNames and insert the following line of code in the class:

var restaurantNames = ["Cafe Deadend", "Homei", "Teakha", "Cafe Loisl", "Petite
Oyster", "For Kee Restaurant", "Po's Atelier", "Bourke Street Bakery", "Haigh's
Chocolate", "Palomino Espresso", "Upstate", "Traif", "Graham Avenue Meats And
Deli", "Waffle & Wolf", "Five Leaves", "Cafe Lore", "Confessional",
"Barrafina", "Donostia", "Royal Oak", "CASK Pub and Kitchen"]

In this example, we use an array to store the table data. The syntax of declaring an array in
Swift is similar to that in Objective C. The values are separated by commas and surrounded by
a pair of square brackets.

In Swift, use let to make a constant and var to make a variable. It's so simple, as
compared to Objective-C. All items in an array are of the same type (e.g. String). And
thanks to Swift's type inference feature, you do not need to specify the array type. It is
automatically detected by Swift. Swift can infer that String is the type to use for the
restaurantNames variable.

Arrays for Absolute Beginners

138

An array is a fundamental data structure in computer programming. You can think of an array
as a collection of data elements. Consider the restaurantNames array in the above code, it
represents a collection of String elements. You may visualize the array like this:

Figure 8-10. restaurantNames array

Each of the array elements is identified or accessed by an index. An array with 10 elements will
have indices from 0 to 9. That means restaurantNames[0] returns the first item of the array.

Let's continue to code. We adopt the two required methods of the UITableViewDataSource
protocol.

func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) ->
Int {
 // Return the number of rows in the section.
 return restaurantNames.count
}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 let cellIdentifier = "Cell"
 let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier,
for: indexPath)

 // Configure the cell...
 cell.textLabel?.text = restaurantNames[indexPath.row]

 return cell
}

The first method is used to inform the table view the total number of rows in a section. You can
simply call the count method to get the number of items in the restaurantNames array.

Quick note: A table view can have multiple sections but there is only one by
default.

139

The second method will be called every time a table row is displayed. By using the indexPath
object, we can get the current row (indexPath.row). Here what we did is to retrieve the indexed
item from the restaurantNames array, and assign it to the text label (cell.textLabel?.text) for
display.

Okay, but what is dequeueReusableCell in the second line of code?

The dequeueReusableCell method is used for retrieving a reusable table cell from the queue
with the specified cell identifier. The Cell identifier is the one we defined earlier in Interface
Builder.

You want your table-based app to be fast and responsive even when handling thousands of
rows of data. If you allocate a new cell for each row of data instead of reusing one, your app will
use excess memory and may result in a sluggish performance when user scrolls the table view.
Remember every cell allocation has a performance cost, especially when the allocation happens
over a short period of time.

The screen real estate of iPhone is limited. Even if your app needs to display 1,000 records, the
screen may only be able to fit 10 table cells at most. Therefore, why on earth would the app
allocate a thousand table view cells instead of creating 10 table cells and reuse them? This
would save tons of memory and make table view work more efficiently. For performance
reasons, you should reuse table view cells instead of creating new ones.

140

Figure 8-11. Illustration showing how UITableView reuses table view cells

Now, let's hit the "Run" button and test your app. Oops! The app still displays a blank table
view just like before.

Why is it the table view still not showing the content as expected? We've written the code for
displaying table data and implemented all required methods. But why the table view didn't
show the content as expected?

There is still one thing left.

Even though the ViewController class has adopted the UITableViewDelegate and
 UITableViewDataSource protocols, the UITableView object in storyboard has no idea about it.

Connecting the DataSource and Delegate

141

We have to tell the UITableView object that ViewController is the delegate object for the data
source.

Go back to Main.storyboard . Select the table view. Press and hold the control key, drag from
the table view to the View Controller object in the document outline view.

Figure 8-12. Connecting Table View with its Datasource and Delegate

Release both buttons. In the pop-over menu, select dataSource. Repeat the above steps and
make a connection with delegate.

142

Figure 8-13. Selecting the dataSource and delegate outlets

That's it. To ensure the connections are linked properly, you can select the table view again.
Click the Connections Inspector icon in the Utility area to reveal the existing connections.
Alternatively, you can right-click the table to reveal the connections as well.

Figure 8-14. Two ways to reveal the connections

Finally, you're ready to test your app. Simply hit the Run button and load your app in the
simulator. Your app should now show a list of restaurant names.

Test Your App

143

Figure 8-15. SimpleTable App

Quick tip: To scroll through the table in the iOS simulator, simply & hold on
the table, drag it up and down to move it.

Wouldn't it be great to add an image to each row? UITableView makes it extremely easy to do
this. You just need to add a line of code to insert a thumbnail in each row.

First, download the sample images from
http://www.appcoda.com/resources/swift3/simpletable-image1.zip. The zipped archive
contains three image files. Unzip the file, and drag the images from Finder to the asset catalog
(Assets.xcassets).

Add Thumbnail to Table View

144

http://www.appcoda.com/resources/swift3/simpletable-image1.zip

Figure 8-16. Adding images to the asset catalog

Now edit ViewController.swift and add the following line of code in the
 tableView(_:cellForRowAtIndexPath:) method. Put it right before return cell :

cell.imageView?.image = UIImage(named: "restaurant")

The UIImage class provided by the UIKit framework lets you create images from files. It
supports various image formats such as PNG, GIF and JPEG. You can pass the name of the
image (file extension is optional) and the class will load the image from the asset catalog.

Earlier we selected to use the Basic cell style for the table view cell. This type of cell style
already comes with a default area for display images or thumbnails. This line of code instructs
 UITableView to load the image and display it in the image view of the table cell. Now, hit the
"Run" button again and your SimpleTable app should display the image in each row.

145

Figure 8-17. SimpleTable app with images

The content of table view now overlaps with the status bar. This doesn't look good. An easy
remedy is to hide the status bar. You can control the appearance of the status bar on a per view
controller basis. If you don't want to show the status bar in a particular view controller, simply
add the following lines of code:

override var prefersStatusBarHidden: Bool {
 return true
}

The prefersStatusBarHidden property indicates whether the view controller should hide the
status bar. By default, the value is set to false . To hide the status, we have to override the
default value and set it to true . Insert the code to the ViewController class and test the app
again. You should have a full-screen table view without status bar.

Hide the Status Bar

Your Exercise

146

The demo app displays the same image for all table cells. Try to tweak the app such that it
shows a different image in each cell. You can download the image pack from
http://www.appcoda.com/resources/swift3/simpletable-image2.zip. Figure 8-18 shows the
resulting screen.

Figure 8-18. Displaying different images in the demo app

Quick note: In case you do not know how to complete the exercise, no worries. I
will go through it with you in the next chapter.

Credit: The images used in this demo project are provided by unsplash.com.

Table view is one of the most commonly used elements in iOS programming. If you thoroughly
understood the materials and built the app, you should have a good idea of how to create your
own table view.

I tried to keep everything simple in the demo app. In a real world app, the table data is

Summary

147

http://www.appcoda.com/resources/swift3/simpletable-image2.zip

generally not 'hard-coded'. Usually, it's loaded from a file, database or somewhere else. We'll
talk about that later. Meanwhile, make sure you thoroughly understand how the table view
works. Otherwise, go back to the beginning and study the chapter again.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/SimpleTable.zip.

148

http://www.appcoda.com/resources/swift3/SimpleTable.zip

I think that's the single best piece of advice: Constantly think about how you could be
doing things better and questioning yourself.

- Elon Musk, Tesla Motors

In the previous chapter, we created a simple table-based app to display a list of restaurants

Chapter 9
Customize Table Views Using Prototype
Cell

149

using the basic cell style. In this chapter, we'll customize the table cell and make it look more
stylish. There are a number of changes and enhancements we are going to work on:

Rebuild the same app using UITableViewController instead of UITableView
Display a distinct image for each restaurant rather than showing the same thumbnail
Design a custom table view cell instead of using the basic style of table view cell

You may wonder why we need to rebuild the same app. There are always more than one way to
do things. Previously, we used UITableView to create the table view. In this chapter, we'll use
 UITableViewController to create a table view app in Xcode. Will it be easier? Yes, it's going to
be easier. Recalled that we needed to explicitly adopt both UITableViewDataSource and
 UITableViewDelegate protocols, UITableViewController has already adopted these protocols
and established the connections for us. On top of this, it has all the required layout constraints
right out of the box.

Starting from this chapter and onwards, you begin to develop a real-world app called FoodPin.
It's gonna be fun!

First, let's see how to use UITableViewController to re-create the same SimpleTable app. Fire
up your Xcode, and create a new project using the Single View application template. Name the
project FoodPin and fill in all the required options for the Xcode project, just like what you did
in the previous chapter.

Quick note: We're building a real app, so let's give it a better name. Feel
free to use other names if you want. Also, make sure you use your own
organization identifier.

Building a Table View App Using UITableViewController

150

Figure 9-1. Create a FoodPin project

Once you create the Xcode project, select Main.storyboard and jump to the Interface Builder
editor. As usual, a default view controller is generated by Xcode.

This time, we will not use the default controller. Select the view controller, and press the
 delete key to delete it. The view controller is associated with ViewController.swift . We do
not need it either. In the Project Navigator, select the file and hit the delete button. Select
"Move to Trash" when prompted. This will completely delete the file.

Go back to Interface Builder. Drag a Table View Controller (i.e. UITableViewController) from
the Object library, and place it in the storyboard. You have to designate that controller as the
initial view controller. This tells iOS that the table view controller is the first view controller to
load. All you need to do is go to the Attributes inspector, and tick the Is Initial View

151

Controller option. You'll then see an arrow pointing to the table view controller (see figure 9-
2).

We haven't inserted any data into the table yet. If you compile and run the app now, you'll end
up with a blank table.

By default, the table view controller is associated with the UITableViewController class (Go to
the Identity inspector to take a look). In order to populate our own data, we have to associate it
with our own class.

Go back to the Project Navigator and right-click the FoodPin folder. Select "New Files..." to
create a new file.

152

Figure 9-3. Create a new file

Choose Source (under iOS category) > Cocoa Touch Class as the template, and then click
 Next . Name the new class RestaurantTableViewController . Because we're working with a table
view controller, change the value of "Subclass of" to UITableViewController . Keep the rest of
the values intact, click "Next" and save it to the project folder. You should see the
 RestaurantTableViewController.swift file in the project navigator.

153

If you're new to programming, you may wonder what a subclass is. Swift is an
object oriented programming (OOP) language. In OOP, a class can be inherited by
another class. In the example, the RestaurantTableViewController class inherits
from the UITableViewController class. It inherits all the states and
functionalities provided by the UITableViewController class. The
RestaurantTableViewController class is known as a subclass (or child class) of
UITableViewController. In other words, the UITableViewController class is
referred as the superclass (or parent class) of RestaurantTableViewController.

The table view controller in the storyboard has no idea about the
 RestaurantTableViewController class. So we have to assign the table view controller with the
new custom class. Go to Main.storyboard and select the table view controller. In the Identity
inspector, set the custom class to RestaurantTableViewController . Now we have established a
relationship between the table view controller in the storyboard and the new class.

Superclass and Subclass

154

Figure 9-5. Set the custom class of the Table View Controller

There is one more thing to configure for the table view. Select the prototype cell. In the
Attributes inspector, change the style to Basic and set the identifier to Cell . This is pretty
much the same as what we have done in the previous chapter.

Okay, the user interface is ready. Let's move onto the code. Select the
 RestaurantTableViewController.swift file in the Project Navigator and declare an instance
variable, which is used for holding the table data.

var restaurantNames = ["Cafe Deadend", "Homei", "Teakha", "Cafe Loisl", "Petite
Oyster", "For Kee Restaurant", "Po's Atelier", "Bourke Street Bakery", "Haigh's
Chocolate", "Palomino Espresso", "Upstate", "Traif", "Graham Avenue Meats",
"Waffle & Wolf", "Five Leaves", "Cafe Lore", "Confessional", "Barrafina",
"Donostia", "Royal Oak", "CASK Pub and Kitchen"]

As said before, the UITableViewController class has already adopted the
 UITableViewDataSource and UITableViewDelegate protocols. Since the
 RestaurantTableViewController class is a subclass of UITableViewController , it has adopted
these protocols too.

If you're not forgotful, we need to implement the following required methods of the
 UITableViewDataSource protocol in order to provide the table data:

tableView(_:numberOfRowsInSection:)
tableView(_:cellForRowAtIndexPath:)

The UITableViewController class has provided a default implementation for these two
methods. However, the default methods don't usually fit well in our own apps. For instance,
the default methods just show a table without any data.

155

In most cases, we have to override the default methods and provide our own implementation
for displaying data. Let's see how we can do that. Insert the following code in
 RestaurantTableViewController.swift :

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {

 let cellIdentifier = "Cell"
 let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier,
for: indexPath)

 // Configure the cell...
 cell.textLabel?.text = restaurantNames[indexPath.row]
 cell.imageView?.image = UIImage(named: "restaurant.jpg")

 return cell
}

In Swift, to override a method of a superclass, we add the override keyword at the very
beginning of the method. When you do this, it's just like saying, "Hey, don't use the default
method implementation. Use mine."

I will not go into the details of the above code as it is exactly the same as the one we covered in
the previous chapter. We just display the restaurant names and images.

Next, change the following code snippets in RestaurantTableViewController . The code is
generated by Xcode when creating the class file. By default, it returns zero for both the number
of section and the number of rows in section. In other words, it's telling the table view that
there is no data in the table view. This is what we want. So we have to modify the code like this:

override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return restaurantNames.count
}

Here we tell the table view that there is only one section and return the total number of
restaurants as stored in the array. As a side note, the numberOfSectionsInTableView method is
optional. If you remove it, the table view still works because the number of sections is set to 1

156

by default.

Lastly, download the image pack from
http://www.appcoda.com/resources/swift3/simpletable-image1.zip and drag all images to the
 Assets.xcassets folder. Now, hit the "Run" button and your FoodPin app should look the
same as the one we built earlier.

Figure 9-6. SimpleTable App

By now you should understand how to present data in a table view. I've showed you two
approaches:

1. By using UITableView and View Controller
2. By using UITableViewController .

You may wonder which approach you should use. In general, approach #2 is good enough.
 UITableViewController has configured everything for you. You can simply override some
methods to provide the table data. But what you lose is flexibility. The table view, embedded in
 UITableViewController , is fixed. You can't change it. If you want to layout a more complicated

157

http://www.appcoda.com/resources/swift3/simpletable-image1.zip

UI using table views, approach #1 will be more appropriate.

Did you go through the exercise in the previous chapter? I hope you've put your effort in it.
There are many ways to display different thumbnails in each table row. I'll show you the most
straightforward way to do. First, download another image pack from
http://www.appcoda.com/resources/swift3/simpletable-image2.zip, and unzip it. Add all the
images into the asset catalog (i.e. Assets.xcasset). The pack includes some food and restaurant
images. If you like, you're free to use your own images.

Figure 9-7. Adding restaurant images to the asset catalog

Before we move on to changing the code, let's revisit the code for displaying the thumbnails in
table row.

cell.imageView?.image = UIImage(named: "restaurant.jpg")

Display Different Thumbnails

158

http://www.appcoda.com/resources/swift3/simpletable-image2.zip

The above line code in the tableView(_:cellForRowAtIndexPath:) method instructs
 UITableView to display restaurant.jpg in each cell. In order to display a different image, we
need to alter this line of code.

As explained before, this method is called by iOS every time a particular table row is about to
display. The current row number is embedded in the indexPath parameter. You can simply
use indexPath.row to find out which row is now being processed.

Therefore, to display a different image in each row, all we need to do is add a new array to store
the file name of thumbnails. Let's name the array restaurantImages . Insert the following line
of code in the RestaurantTableViewController class:

var restaurantImages = ["cafedeadend.jpg", "homei.jpg", "teakha.jpg",
"cafeloisl.jpg", "petiteoyster.jpg", "forkeerestaurant.jpg", "posatelier.jpg",
"bourkestreetbakery.jpg", "haighschocolate.jpg", "palominoespresso.jpg",
"upstate.jpg", "traif.jpg", "grahamavenuemeats.jpg", "wafflewolf.jpg",
"fiveleaves.jpg", "cafelore.jpg", "confessional.jpg", "barrafina.jpg",
"donostia.jpg", "royaloak.jpg", "caskpubkitchen.jpg"]

In the above code, we initialize the restaurantImages array with a list of image file names. The
order of images are aligned with that of the restaurantNames .

In order to load the corresponding image of the restaurant, change the line of code in the
 tableView(_:cellForRowAtIndexPath:) method from:

cell.imageView?.image = UIImage(named: "restaurant.jpg")

to:

cell.imageView?.image = UIImage(named: restaurantImages[indexPath.row])

After saving all the changes, try to run your app again. Each restaurant has its own image.

159

Figure 9-8. SimpleTable App with different images

Does the app look better? We're going to make it even better by customizing the table cells. So
far we utilize the default style of the table view cell. The position and size of the thumbnail are
fixed. What if you want to:

Change the height of the cell
Make the thumbnail a little bit bigger
Show more information about the restaurant such as location and type
Change the font type and size
Display circular images instead of square images

To give you a better idea about how the cell is customized, take a look at figure 9-9. The cell
looks awesome, right?

Customize Table View Cells

160

The beauty of prototype cells is that it allows developers to customize the cell right inside the
table view controller. To build a custom cell, you simply add other UI controls (e.g. labels,
image views) to the prototype cell.

Let's first change the style of the cell. You can't customize the cell when it's set to the Basic
style. Select the prototype cell and change the style from Basic to Custom in the Attributes
inspector.

Figure 9-10. Changing the cell style from Basic to Custom

Designing Prototype Cells in Interface Builder

161

In order to accommodate a larger thumbnail, we have to make the cell a little bit bigger. You'll
need to change the row height of table view and prototype cell. Select the table view and
change the row height to 80 .

Then select the prototype cell and go to the Size inspector. Check the custom checkbox and
change the row height to 80 .

After altering the row height, drag an Image View object from the Object library to the
prototype cell. You're free to resize the image to fit your need. Figure 6-13 shows my
recommended size. You can select the image view, click the Size inspector and change the
attribute of X, Y, Width and Height.

Next, we will add three labels to the prototype cell:

Name - for restaurant name
Location - for restaurant location (e.g. New York)
Type - for restaurant type (e.g. tea house)

To add a label, drag a Label object from the Object library to the cell. Name the first label

162

Name. Instead of using the system font for the label, we'll use a text style. I will explain to you
the difference of a fixed font and a text style in later chapters. For now, just go to the Attributes
inspector, and change the font to Text Styles - Headline .

Drag another label to the cell and name it Location. Change the font style to Light and set the
font size to 14 points. Also set to the font color to Dark Gray . Lastly, create another label and
name it Type. Similarly, change the font style to Light and set the font size to 13 points.

I've covered stack views in chapter 6. Not only can you use stack views in a view controller, you
can also apply stack views to layout the components in a prototype cell. Therefore, instead of
defining the layout constraints for each of the labels and the image view, we will use stack
views to group them together.

First, hold the command key, and select the three labels. Click the Stack button in the layout
bar to embed them in a vertical stack view. Go to the Attributes inspector, and change the
spacing of the stack view from 0 to 1 . This will add a space between the labels.

163

Figure 9-15. Embedding the labels using stack view

Next, select both the image view and the stack view that we have just created. Click the Stack
button, Interface Builder will embed them into a horizontal stack view. By default, there is no
space between the image view and the "Label" stack view. You can go up to the Attribute
inspector, and change the spacing option from 0 to 10 . Also set the alignment to Top .
Awesome, right? You can nest stack views to create complex layouts.

Figure 9-16. Combining the label stack view and the image view into a horizontal stack view

164

Again, it doesn't mean you do not need to use auto layout. We still need to define the layout
constraints for the stack view. Figure 9-17 depicts the layout requirements of the cell.

Figure 9-17. The layout requirement of the prototype cell

In brief, we want the cell content (i.e. the stack view) is confined to the viewable area of the
cell. This is why we're going to define a spacing constraint for each side of the stack view. On
top of this, the size of image view should be fixed to 60x60 points.

Now select the stack view, and click the Pin button in the layout bar. Set the values of the top,
left, bottom and right sides to 2, 6, 1.5 and 0 respectively.

165

Figure 9-18. Adding spacing constraints for the stack view

Once you add the 4 constraints, the stack view should be resized automatically. Next, in the
document outline, drag horizontally from the image view to itself. In the pop over menu, hold
shift key and choose both "width" and "height" options. This ensures the size of the image view
is fixed.

166

Figure 9-19. Adding the width and height constraints for the image view

Interface Builder detects certain layout constraint issues. Click the red arrow in the document
outline view, and then click the red indicator to let Xcode fix the issues for you.

Figure 9-20. Fixing auto layout issues

Cool! You've completed the layout of the prototype cell. Let's move on and write some code.

So far, we've designed the table cell. But how can we change the label values of the prototype
cell? These values are supposed to be dynamic. By default, the prototype cell is associated with

Creating a Class for the Custom Cell

167

the UITableViewCell class. In order to update the cell data, we're going to create a new class,
which extends from UITableViewCell , for the prototype cell. This class represents the
underlying data model of the custom cell.

As usual, right click the "FoodPin" folder in Project Navigator and select "New File…". After
selecting the option, Xcode prompts you to select a template. As we're going to create a new
class for the custom table view cell, select "Cocoa Touch Class" and click "Next". Fill in
 RestaurantTableViewCell as the class name and set the value of "Subclass of" to
 UITableViewCell .

Figure 9-21. Creating a new class for the custom table view cell

Click "Next" and save the file in the FoodPin project folder. Xcode should create a file named
 RestaurantTableViewCell.swift in the Project Navigator.

168

Next, declare the following outlet variables in the RestaurantTableViewCell class:

@IBOutlet var nameLabel: UILabel!
@IBOutlet var locationLabel: UILabel!
@IBOutlet var typeLabel: UILabel!
@IBOutlet var thumbnailImageView: UIImageView!

The RestaurantTableViewCell class serves as the data model of the custom cell. In the cell, we
have 4 properties that are changeable:

thumbnail image view
name label
location label
type label

The data model stores and provides the values for the cell to display. Each of them is required
to connect with the corresponding user interface object in Interface Builder. By connecting the
source code with the UI objects, we can change the values of UI objects dynamically.

This is a very important concept in iOS programming. Your UI in storyboard and code are
separated. You create the UI in Interface Builder, and you write your code in Swift. If you want
to change the value or properties of a UI element (e.g. label), you have to establish a
connection between them so that an object in your code can obtain a reference to an object
defined in a storyboard. In Swift, you use @IBOutlet keyword to indicate a property of a class,
that can be exposed to Interface Builder. For properties annotated with the IBOutlet
keywords, we call it outlets.

So in the above code, we declare four outlets. Each outlet is going to connect with its
corresponding UI object. Figure 9-22 depicts the connections.

169

Figure 9-22. Outlet connections

We've used @IBAction to indicate action methods when developing the HelloWorld
app. What's the difference between @IBAction and @IBOutlet? @IBOutlet is used
to indicate a property that can be connected with a view object in a
storyboard. For example, if the outlet is connected with a button, you can use
the outlet to change the color or title of the button. On the other hand,
@IBAction is used to indicate an action method that can be triggered by a
certain event. For example, when a user taps a button, it can trigger an action
method to do something.

Before we can establish a connection between the outlets of CustomTableViewCell class and the
prototype cell in Interface Builder. We have to first set the custom class.

Figure 9-23. Set the custom class of the prototype cell

By default, the prototype cell is associated with the default UITableViewCell class. To assign
the prototype cell with the custom class, select the cell in storyboard. In the Identity inspector,
set the custom class to CustomTableViewCell (see figure 9-23).

@IBAction vs @IBOutlet

170

Next, we'll establish the connections between the outlets and UI objects in the prototype cell.
In Interface Builder, right click the cell in the Document Outline view to bring up the Outlets
inspector. Drag from the circle (next to thumbnailImageView) to the image view object in the
prototype cell (see figure 9-24). Xcode automatically establishes the connection when you
release the button.

Figure 9-24. Connecting the outlet with the image view

Repeat the above procedures for the following outlets:

locationLabel - connects to the Location label the cell
nameLabel - connects to the Name label of the cell
typeLabel - connects to the Type label of the cell

After you've made all the connections, the UI should look like the screenshot shown in figure
9-25.

Establishing the Connection

171

Figure 9-25. The outlet connections

Finally, we come to the last part of the change. In the RestaurantTableViewController class,
we're still using UITableViewCell (i.e. the default cell) to display the content. We need to
modify a line of code to replace it with our custom cell. If you look into the existing
implementation of the tableView(_:cellForRowAtIndexPath:) method. The second line of code
is:

let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier, for:
indexPath)

I've explained the meaning of the dequeueReusableCell method in the previous chapter. It is
flexible enough to return any cell types from the queue. By default, it returns a generic cell of a
 UITableViewCell type. In order to use the RestaurantTableViewCell class, it's our
responsibility to "convert" the returned object of dequeueReusableCell to
 RestaurantTableViewCell . This conversion process is known as downcasting. In Swift, we use
the as! keyword to perform a forced conversion. Therefore, change the above line of code to
the following:

let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier, for:
indexPath) as! RestaurantTableViewCell

Coding the Table View Controller

172

Downcasting allows you to convert a value of a class to its derived class. For
example, RestaurantTableViewCell is a child class of UITableViewCell. The
dequeueReusableCellWithIdentifier method always returns a UITableViewCell
object. If a custom cell is used, this object can be converted to the specific
cell type (e.g. RestaurantTableViewCell). Prior to Swift 1.2, you can just use
the as operator for downcasting. However, sometimes the object may not be
converted to a specified type. Therefore, from Swift 1.2 and onwards, Apple
introduced two more operators: as! and as?. If you're quite sure that the
downcasting can perform correctly, use as! to perform the conversion. In case
you're not sure if the value of one type can be converted to another, use as?
to perform an optional downcasting. You're required to perform additional
checking to see if the downcasting is successful or not.

I know you can't wait to test the app, but we need to change a few more lines of code. The lines
of code below set the values of restaurant name and image:

// Configure the cell...
cell.textLabel?.text = restaurantNames[indexPath.row]
cell.imageView?.image = UIImage(named: restaurantImages[indexPath.row])

Both textLabel and imageView are properties of the default UITableViewCell class. Because
we're now using our own RestaurantTableViewCell , we need to use the properties of the
custom class. Change the above lines to the following:

// Configure the cell...
cell.nameLabel.text = restaurantNames[indexPath.row]
cell.thumbnailImageView.image = UIImage(named: restaurantImages[indexPath.row])

Now you're ready to go. Hit the Run button and test the app. Your app should look like the one
shown in figure 9-26. Try to rotate the simulator. The app also works in landscape orientation.

as! and as?

173

Figure 9-26. FoodPin app with custom table view cells

It is a huge improvement from the previous version of the app. We're going to make it even
better by changing the thumbnail into circular image.

Since the release of iOS 7, iOS favors circular image over square image. You can find circular
icons or images in stock apps such as Contacts and Phone. Wouldn't it be great to make all the
restaurant images circular? You do not need Photoshop to tweak the images. What you need is
just two lines of code.

Every view in the UIKit (e.g. UIView , UIImageView) is backed by an instance of the CALayer
class (i.e. layer object). The layer object is designed to manage the backing store for the view
and handles view-related animations.

The layer object provides various attributes that can be set to control the visual content of the

Circular Image

174

view such as:

Background color
Border and border width
Shadow color, width, etc
Opacity
Corner radius

The corner radius is the attribute, which we use to draw rounded corners. Xcode provides two
ways to edit the layer properties. You can directly update its properties through code. Here is
the lines of code the following lines of code for changing the corner radius of the image view:

cell.thumbnailImageView.layer.cornerRadius = 30.0
cell.thumbnailImageView.clipsToBounds = true

An even easier way is to make the change through Interface Builder. First, select the image
view in the stack view. Go to the Identity inspector, click the Add button (+) in the lower left of
the user defined runtime attributes editor. A new runtime attribute appears in the editor.
Double click on the Key Path field of the new attribute to edit the key path for the attribute. Set
the value to layer.cornerRadius and hit Return to confirm. Click on the Type attribute and
choose Number . Lastly, set the value to 30 . To make a circular image from a square image, the
radius is set to half the width of the image view. Here, the width of square image is 60 points.
Thus, the corner radius is set to 30 points.

Figure 9-27. Set the runtime attribute to make the corner round

When the image view is initialized, this runtime attribute will be automatically loaded to make
the corner round. There is one more thing you have to configure before the circular image

175

works properly. Select the image view and go to the Attributes inspector. In the Drawing
section, enable the Clip to Bounds option. This causes the content to be clipped to the rounded
corners.

Figure 9-28. FoodPin app with circular images

Now compile and run the app. The UI looks even better, right? Without writing a line of code,
we change the square images to circular one.

176

Figure 9-29. FoodPin app with circular images

You're free to alter the value of corner radius. Try to change the corner radius to 10 points and
see what you get.

As of now, the app simply displays "Location" and "Type" for all rows. As an exercise, I'll leave
it to you to fix the issue. Try to edit the source code to update the location and type labels.
Below are the two arrays you need:

var restaurantLocations = ["Hong Kong", "Hong Kong", "Hong Kong", "Hong Kong",
"Hong Kong", "Hong Kong", "Hong Kong", "Sydney", "Sydney", "Sydney", "New
York", "New York", "New York", "New York", "New York", "New York", "New York",
"London", "London", "London", "London"]

var restaurantTypes = ["Coffee & Tea Shop", "Cafe", "Tea House", "Austrian /
Causual Drink", "French", "Bakery", "Bakery", "Chocolate", "Cafe", "American /
Seafood", "American", "American", "Breakfast & Brunch", "Coffee & Tea", "Coffee

Exercise #1

177

& Tea", "Latin American", "Spanish", "Spanish", "Spanish", "British", "Thai"]

The previous exercise may be too easy for you. Here is another challenge. Try to redesign the
prototype cell and see if you create an app like this (see figure 9-30).

Figure 9-30. Redesigned Custom Table

Congratulations! You've made a huge progress. If you understand the ins and outs of cell
customization, you're ready to make some awesome UIs. Table view is the backbone for most
iOS apps. Unless you're building a game, you'll probably implement a table view in one way or
another when building your own apps. Table view customization may be a bit complex for
some of you. So take some time to work on the exercises and play around with the code.
Remember "learn by doing" is the best way to learn coding.

Exercise #2

Summary

178

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinCustomTable.zip. If you can't figure out
how to complete the exercise, you can download the solution from
http://www.appcoda.com/resources/swift3/FoodPinCustomTableExercise.zip.

179

http://www.appcoda.com/resources/swift3/FoodPinCustomTable.zip
http://www.appcoda.com/resources/swift3/FoodPinCustomTableExercise.zip

There is no learning without trying lots of ideas and failing lots of times.

- Jonathan Ive

Up till now, we only focus on displaying data in a table view. I guess you are thinking how we
can interact with the table view and detect row selections. This is what we're going to discuss in

Chapter 10
Interacting with Table Views and Using
UIAlertController

180

this chapter.

We'll continue to polish the FoodPin app, which we have built in the previous chapter
(http://www.appcoda.com/resources/swift3/FoodPinCustomTable.zip), and add a couple of
enhancements:

Bring up a menu when a user taps a cell. The menu offers two options: Call and Check-in.
Display a heart icon when a user selects Check-in.

Through implementing these new features, you will also learn how to use UIAlertController,
which is commonly used to display alerts in iOS apps.

Figure 10-1. Sample alerts in Facebook and Mashable apps

Quick note: This class replaces the UIActionSheet and UIAlertView classes for
displaying alerts in iOS 8 (or up).

181

http://www.appcoda.com/resources/swift3/FoodPinCustomTable.zip

When we first built the SimpleTable app in Chapter 8, we adopted two delegates,
 UITableViewDelegate and UITableViewDataSource , in the RestaurantTableViewController class.
I have discussed with you the UITableViewDataSource protocol but barely mentioned about the
 UITableViewDelegate protocol.

As said before, the delegate pattern is very common in iOS programming. Each delegate is
responsible for a specific role or task to keep the system simple and clean. Whenever an object
needs to perform a certain task, it depends on another object to handle it. This is usually
known as "separation of concerns" in software design.

The UITableView class applies this design concept. The two protocols are designed for different
purposes. The UITableViewDataSource protocol defines methods, which are used for managing
table data. It relies on the delegate to provide the table data. On the other hand, the
 UITableViewDelegate protocol is responsible for setting the section headings and footers of the
table view, as well as, handling cell selections and cell reordering.

To manage the row selection, we will implement some of the methods in the
 UITableViewDelegate protocol.

Before implementing the methods, you may wonder:

How do we know which methods in UITableViewDelegate to implement?

The answer is "Read the documentation". You're granted free access to the Apple's official iOS
developer reference (https://developer.apple.com/library/ios/). As an iOS developer, you need
to get used to reading the API documentation. There is no single book on earth to cover
everything about the iOS SDK. Most of the time when we want to learn more about a class or a
protocol, we have to look up to the API document. Apple provides a simple way to access the
documentation in Xcode. All you need to do is place the cursor over a class or a protocol (e.g.
 UITableViewController) and press control-command-? . This brings up a popover showing the
details of the class like the protocols it has adopted.

Understanding the UITableViewDelegate Protocol

Reading the Documentation

182

https://developer.apple.com/library/ios/

Figure 10-2. Accessing the API documentation by using a shortcut key

Clicking UITableViewDelegate would further bring up a documentation browser. From there,
you'll find all the methods defined in the protocol.

Figure 10-3. UITableViewDelegate Documentation

183

By glancing through the document, you will find the methods below for managing row
selections:

 func tableView(UITableView, willSelectRowAt: IndexPath)

 func tableView(UITableView, didSelectRowAt: IndexPath)

Both methods are designed for row selections. The only difference is that
 tableView(_:willSelectRowAt:) is called when a specified row is about to be selected. You may
use this method to prevent the selection of a particular cell from taking place. Typically, you
use the tableView(_:didSelectRowAt:) method. It is called after the user selects a row, to
handle the row selection. We will implement this method to perform addtional tasks (e.g.
bringing up a menu) after a row is selected.

Okay, that's enough for the explanation. Let's move onto the interesting part and write some
code. In the FoodPin project, open the RestaurantTableViewController.swift file and
implement the tableView(_:didSelectRowAt:) method in the RestaurantTableViewController
class:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 // Create an option menu as an action sheet
 let optionMenu = UIAlertController(title: nil, message: "What do you want
to do?", preferredStyle: .actionSheet)

 // Add actions to the menu
 let cancelAction = UIAlertAction(title: "Cancel", style: .cancel, handler:
nil)
 optionMenu.addAction(cancelAction)

 // Display the menu
 present(optionMenu, animated: true, completion: nil)
}

The above code creates an option menu by instantiating a UIAlertController object. When a
user taps any rows in the table view, this method will be called automatically to bring up an
action sheet showing a What do you want to do message and a Cancel button. Try to run the

Managing Row Selections by Implementing the Protocol

184

project to have a quick test. The app should now be able to detect a touch.

Figure 10-4. Displaying an action sheet

Before we move on, let me talk more about the UIAlertController class. The
 UIAlertController class was first introduced in iOS 8 to replace both UIAlertView and
 UIActionSheet classes from older versions of iOS SDK. It is designed for displaying alert
messages to a user.

Referring to the code snippet in the previous section, you can specify the style of the
 UIAlertController object through the preferredStyle parameter. You can either set its value
to .actionSheet or .alert . Figure 10-5 displays the sample alert styles.

More on UIAlertController

185

Figure 10-5. ActionSheet (left) and Alert (right)

In addition to displaying a message to users, you can assign actions to the alert controller to
give users a way to respond. To do that, you create a UIAlertAction object with your preferred
title, style, and the block of code to execute for the action. In the code snippet, we create a
 cancelAction object with the title 'Cancel' and '.Cancel' style. There is nothing to perform
when a user selects the cancel action. Thus, the handler is set to nil . After the UIAlertAction
object is created, you can assign it to the alert controller by using the addAction method.

When the alert controller is configured properly, you can simply present it using the
 presentViewController method.

This is how you use the UIAlertController class to present an alert. As a beginner, you may
have a couple of questions in mind:

How do I know the available values of the preferredStyle parameter when creating a
 UIAlertController object?
The dot syntax looks new to me. Shouldn't it be written as
 UIAlertControllerStyle.actionSheet ?

186

Both are good questions.

For the first question, again the answer is "Refer to the documentation". In Xcode, you can
place the cursor over the preferredStyle parameter and press control-command-? . Xcode will
show the method declaration. You can further click UIAlertControllerStyle to read the API
reference. As you can see in figure 10-6, UIAlertControllerStyle is an enumeration, which
defines two possible values: actionSheet and alert .

Figure 10-6. UIAlertControllerStyle

Quick note: An enumeration is a common type in Swift that defines a list of
possible values for that type. The UIAlertControllerStyle is a good example.

We can refer to the values using UIAlertControllerStyle.actionSheet or
 UIAlertControllerStyle.alert . So you can write the code like this when creating a
UIAlertController:

let optionMenu = UIAlertController(title: nil, message: "What do you want to
do?", preferredStyle: UIAlertControllerStyle.actionSheet)

187

There is nothing wrong with the code above. Swift gives developers a shorthand and helps us
type less code. Because the type of the preferredStyle parameter is already known (i.e.
 UIAlertControllerStyle), Swift lets you use a shorter dot syntax by omitting
 UIAlertControllerStyle . This is why we instantiate the UIAlertController object like this:

let optionMenu = UIAlertController(title: nil, message: "What do you want to
do?", preferredStyle: .actionSheet)

The same applies to UIAlertActionStyle . The UIAlertActionStyle is an enumeration with
three possible values: default, cancel and destructive. When creating the cancelAction object,
we also use the shorthand syntax:

let cancelAction = UIAlertAction(title: "Cancel", style: .cancel, handler: nil)

Now let's add two more actions to the alert controller:

Call action - Call the selected restaurant. We will populate a fake phone number and
display 'Call 123-000-x', where x is the index of the selected row.
Check-in action - When selected, this option adds a checkmark to the selected restaurant.

In the tableView(_:didSelectRowAt:) method, add the following code for the "Call" action. You
can insert the code after the initialization of cancelAction :

// Add Call action
let callActionHandler = { (action:UIAlertAction!) -> Void in
 let alertMessage = UIAlertController(title: "Service Unavailable", message:
"Sorry, the call feature is not available yet. Please retry later.",
preferredStyle: .alert)
 alertMessage.addAction(UIAlertAction(title: "OK", style: .default, handler:
nil))
 self.present(alertMessage, animated: true, completion: nil)
}

let callAction = UIAlertAction(title: "Call " + "123-000-\(indexPath.row)",
style: .default, handler: callActionHandler)
optionMenu.addAction(callAction)

In the above code, you may not be familiar with the callActionHandler object. As mentioned

Adding Actions to the Alert Controller

188

before, you can specify a block of code as a handler when creating a UIAlertAction object. The
block of code will be executed when a user selects the action. Previously, we specify nil for
the cancelAction object. That means we do not have any follow-up action for the Cancel
button.

For the callAction object, we assign it with callActionHandler . The code block displays an
alert, telling the user that the call feature is not yet available.

In Swift, this block of code is known as Closure. Closures are self-contained blocks of
functionality that can be passed around in your code. It is very similar to blocks in Objective-C.
Like the example above, one way to provide the action closure is to declare it as a constant or
variable with the block of code as the value. The first part of the code block is identical to the
definition of the handler parameter of UIAlertAction . The in keyword indicates that the
definition of the closure's parameters and return type has finished, and the body of the closure
will begin. Figure 10-7 illustrates the syntax of a closure.

Figure 10-7. Closure

The title of the callAction object is a fake phone number. It is generated by concatenating
'123-000-' with the selected row index. As you can see from the code, Swift allows developers
to concatenate strings using the addition operator (+). In addition, you can create a string from
an integer or other literals. All you need is to wrap a pair of parentheses, prefixed with a
backslash like this:

"Call " + "123-000-\(indexPath.row)"

189

Quick note: String concatenation has been covered in the Playgrounds chapter.
If you haven't gone through the exercise in chapter 2, it's time to check it
out. Furthermore, you can refer to the appendix for an introduction of Swift.

Following the implementation of the Call action, add the following lines of code for the Check-
in action:

// Check-in action
let checkInAction = UIAlertAction(title: "Check in", style: .default, handler:
{
 (action:UIAlertAction!) -> Void in

 let cell = tableView.cellForRow(at: indexPath)
 cell?.accessoryType = .checkmark
})
optionMenu.addAction(checkInAction)

The above code shows you another way to use closure. You can write the closure inline as a
parameter of the handler. This is the preferred way as the code is clearer and more readable.

You may wonder what the question mark is for. The cell is known as an optional
in Swift. Optional is a new type introduced in Swift. An optional simply means
'there is a value' or 'there isn't a value at all'. The cell returned by
tableView.cellForRow(at:) is an optional. To access the accessoryType property
of the cell, you use the question mark. In this case, Swift will check if the
cell exists and allow you to set the value of accessoryType if the cell exists.
In most cases, the autocomplete feature of Xcode automatically adds the
question mark for you when accessing a property of an optional. To learn more
about Optionals, you can refer to the appendix.

When a user selects the "Check in" option, we add a checkmark to the selected cell to indicate
he/she has been to the restaurant. For a table view cell, the right part is reserved for an
accessory view. There are four types of built-in accessory views including disclosure indicator,
detail disclosure button, checkmark and detail. In this case, we use checkmark as the
indicator.

The first line of the code block retrieves the selected table cell using indexPath , which contains
the index of the selected cell. The second line updates the accessoryType property of the cell
with a check mark.

Optionals in Swift

190

Compile and run the app. Tap a restaurant and choose one of the actions, it'll either show you a
check mark or an alert.

Figure 10-8. Call action and I've been here action

For now, when you select a row, the row is highlighted in gray and stayed as selected. Add the
following code at the end of the tableView(_:didSelectRowAt:) method to deselect the row.

tableView.deselectRow(at: indexPath, animated: false)

The app looks great. If you look at it closely, however, there is a bug in the app. Say, you mark
the 'Cafe Deadend' restaurant using the Check-in action. If you scroll down the table, you'll
find that another restaurant (e.g. Palomino Espresso) also contains a checkmark. What's the
problem? Why did the app add an extra checkmark?

Like every programmer, I hate bugs especially when facing a project deadline. However
it's always the bugs that help me improve my programming skills. You'll hit a lot of bugs
too as you continue to learn. Just get used to it.

We Hit a Bug

191

The problem is due to cell reuse, that we have discussed in the previous chapter. For example,
the table view has 30 cells. For performance reason, instead of creating 30 table cells,
 UITableView may just create 10 cells and reuses them as you scroll through the table. In this
case, UITableView reuses the 1st cell (originally used for Cafe Deadend with a checkmark) for
displaying another restaurant. In our code, we only update the image view and labels when the
table view reuses the same cell. The accessory view is not updated. Thus, the next restaurant
reusing the same cell shares the same accessory view. If the accessory view contains a
checkmark, that restaurant will also carry a checkmark.

So how can we resolve the bug?

We have to find another way to keep track of the checked items. How about creating another
array to save the checked restaurants? In the RestaurantTableViewController.swift file,
declare a Boolean array:

var restaurantIsVisited = Array(repeating: false, count: 21)

Bool is a data type in Swift that holds a Boolean value. Swift provides two Boolean values: true
and false. We declare the restaurantIsVisited array to hold a collection of Bool values. Each
value in the array indicates whether the corresponding restaurant is marked as "Check-in". For
example, we can look into the value of restaurantIsVisited[0] to see if Cafe Deadend is
checked or not.

The values in the array are initialized to false . In other words, the items are unchecked by
default. The above line of code shows you a way to initialize an array in Swift with repeated
values. The initialization is the same as the following:

var restaurantIsVisited = [false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false, false, false,
false, false, false]

We have to make a couple of changes in order to fix the bug. First, we need to update the value
of the Bool array when a restaurant is checked. Add a line of code in the handler of the
 checkInAction object:

let checkInAction = UIAlertAction(title: "Check in", style: .default, handler:
{
 (action:UIAlertAction!) -> Void in

192

 let cell = tableView.cellForRow(at: indexPath)
 cell?.accessoryType = .checkmark
 self.restaurantIsVisited[indexPath.row] = true
})

The code is very straightforward. We update the value of the selected item from false to
 true .

Lastly, add a few lines of code to update the accessory view in the tableView(_:cellForRowAt:)
method before return cell :

if restaurantIsVisited[indexPath.row] {
 cell.accessoryType = .checkmark
} else {
 cell.accessoryType = .none
}

Here we check if the restaurant to be displayed is marked. If the condition is true , we display
a checkmark in the cell. Otherwise, just display nothing. We now refer to the
 restaurantIsVisited array to see if the restaurant is marked. So even if the cell is reused, we
can display the accessory view correctly.

Now, compile and run the app again. Your bug should now be resolved.

As a side note, you can further simplify the above if condition to a single line of code using the
ternary conditional operator (?:):

cell.accessoryType = restaurantIsVisited[indexPath.row] ? .checkmark : .none

The ternary conditional operator is an efficient shorthand for evaluating simple condition.

Presently the app doesn't allow users to uncheck the checkmark. Think about how you can
alter the code such that the app can toggle the checkmark. You'll also need to show a different
title for the Undo Check in button if the selected cell is marked. It's not too hard to make the
changes.

Your Exercise

193

Figure 10-9. Deselecting a restaurant

Take some time to work on the exercise. I'm sure you'll learn a lot.

At this point, you should have a solid understanding about how to create table view, customize
table cells and handle table row selection. You're ready to build a simple table view app on your
own (e.g. a simple ToDo app). I always recommend you to create your own project. I don't
mean you have to start a big one. If you love travel, create a simple app that displays a list of
your favorite destinations. If you love music, create your own app that shows a list of your
favorite albums. Just play around with Xcode, make mistake and learn along the way.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinTableSelection.zip.

In the next chapter, we'll continue to explore table view and see how you can delete a table row.

Summary

194

http://www.appcoda.com/resources/swift3/FoodPinTableSelection.zip

195

If you spend too much time thinking about a thing, you'll never get it done. Make at least
one definite move daily toward your goal.

– Bruce Lee

Now you know how to handle table row selection. But how about deletion? How can we delete

Chapter 11
Table Row Deletion, Custom Action
Buttons, Social Sharing and MVC

196

a row from a table view?

It's a common question when building a table-based app. Select, delete, insert and update are
the basic operations when dealing with data. We've discussed about selection. Let's talk about
deletion in this chapter. In addition, we'll go through a couple of new features to the FoodPin
app:

1. Adding a custom action button when a user swipes horizontally in a table row. This is
usually known as Swipe for More action.

2. Adding a social sharing feature to the app, that enables users to share the restaurants on
Twitter or Facebook.

There are a lot to learn in this chapter, but it's going to be fun and rewarding. Let's get started.

Before jumping into the coding part, I would like to give you an introduction of Model-View-
Controller (MVC) model, which is one of the most quoted design patterns for user interface
programming.

I try to keep this book as practical as possible and seldom talk about the programming
theories. That said, you can't avoid from learning Model-View-Controller, especially your goal
is to build great apps or become a competent programmer. MVC is not a concept that applies
to iOS programming only. You may have heard of it if you've studied other programming
languages, such as Java or Ruby. It is a powerful design pattern used in designing a software
applications, whether it is a mobile app and a web app.

At the heart of MVC, and the idea that was the most influential to later frameworks, is
what I call Separated Presentation. The idea behind Separated Presentation is to make a
clear division between domain objects that model our perception of the real world, and
presentation objects that are the GUI elements we see on the screen. Domain objects
should be completely self contained and work without reference to the presentation, they
should also be able to support multiple presentations, possibly simultaneously. This

A Brief Introduction to Model View Controller

Understanding Model-View-Controller

197

approach was also an important part of the Unix culture, and continues today allowing
many applications to be manipulated through both a graphical and command-line
interface.

By Martin Fowler

No matter which programming language you learn, one important concept that you need to
know is Separation of Concerns (SoC). The concept is pretty simple. Here, the Concerns are
different aspects of software functionality. This concept encourages developers to break a
complicated feature or program into several areas of concern so that each area has its own
responsibility. The delegate pattern, that we explained in the earlier chapters, is one of the
examples of SoC.

The model-view-controller (MVC) concept is another example of SoC. The core idea behind
MVC is to separate a user interface into three areas (or groups of objects) that each area is
responsible for a particular functionality. As the name suggests, MVC breaks a user interface
into three parts:

Model – model is responsible for holding the data or any operations on the data. The
model can be as simple as an array object that stores the table data. Add, update and
delete are examples of the operations. In business world, these operations are usually
known as business rules.
View – view manages the visual display of information. For example, UITableView
displays data in a list format.
Controller – controller is the bridge between the model and the view. It translates the
user interaction from the view (e.g. tap) into the appropriate action to be performed in the
model. For example, a user taps the delete button in the view. Consequently, the controller
triggers a delete operation in the model. Once finished, the model requests the view to
refresh itself so as to reflect the update of the data model.

To help you better understand MVC, let's use the SimpleTable app (the one that we have built
in chapter 8) as an example. The app displays a list of restaurants in the table view. If you turn
the implementation into a visual illustration, here is how the table data is displayed:

198

The restaurantNames object, which is an array, is the Model. Each table row maps to an
element of the restaurantNames array. The UITableView object is the actual View to be seen by
a user. It's responsible for all the visuals (e.g. color of the table rows, style of the tableview,
separator style, etc). The UITableViewController object, which is the Controller, acts as the
bridge between the table view and the data model. It manages the table view and is responsible
to load the data from the model.

I hope you now have a better understanding of Model-View-Controller. Let's move onto the
coding part and see how we can delete a row from a table view. We'll continue to develop the
FoodPin app (if you haven't completed the previous exercise, you can start with by
downloading the project from
http://www.appcoda.com/resources/swift3/FoodPinTableSelection.zip) and add the "delete"
feature.

If you understand the MVC model, you probably have some ideas on the implementation of

Deleting a Row from UITableView

199

http://www.appcoda.com/resources/swift3/FoodPinTableSelection.zip

row deletion. There are three main tasks we have to do:

1. Enable the swipe-to-delete feature of the table view so that the user can select the Delete
option

2. Delete the corresponding table data from the data model
3. Reload the table view to reflect the change of table data

In iOS app, users normally swipe horizontally across a table row to reveal the Delete button.
Earlier, we have adopted the UITableViewDataSource protocol. If you've read the
documentation of the protocol, you will find a method called tableView(_:commit:forRowAt:) .
This is the method that handles the deletion (or insertion) of a specific row.

To enable the swipe-to-delete feature of a table view, all you need to do is implement the
method. If the method exists, the table view will automatically display a Delete button when
the user swipes across a row.

Try to add the following code to the RestaurantTableViewController.swift file and put the code
inside the RestaurantTableViewController class:

override func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {

}

Now let's have a quick test. Run the app on an iPhone simulator. Though the method is
currently without any implementation, you should see the Delete button when swiping across a
row.

Enable the Swipe-to-delete feature

200

Figure 11-2. Swipe-to-delete feature

The next thing is to implement the method and write the code for removing the actual table
data. From the method declaration, the indexPath parameter contains the row number of the
cell, which is about to delete. You can make use of this information to remove the
corresponding element from the data arrays.

In the FoodPin app, the restaurantNames , restaurantLocations , restaurantTypes , and
 restaurantIsVisited are the data model. Obviously, we have to remove the data of the selected
restaurant from all of the arrays. To remove an item from an array, you can simply call the
 remove(at:) method of the array object. So update the method with the code below:

override func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {

 if editingStyle == .delete {

Delete Row Data from the Model

201

 // Delete the row from the data source
 restaurantNames.remove(at: indexPath.row)
 restaurantLocations.remove(at: indexPath.row)
 restaurantTypes.remove(at: indexPath.row)
 restaurantIsVisited.remove(at: indexPath.row)
 restaurantImages.remove(at: indexPath.row)
 }
}

The method supports two types of editing styles: insert and delete. Because we only remove the
data when the user taps the Delete button, we first check editingStyle before executing the
code block.

Now run and test your app again. Oops! The app doesn't work as expected. When you tap the
Delete button, the cell is not removed. You may think that the data was not removed properly.
Let's do some debugging here. Insert the following lines of code before the end of the method
to print out the content of the array:

print("Total item: \(restaurantNames.count)")
for name in restaurantNames {
 print(name)
}

In Swift, you use the print method to output a message to the console. Printing the content of
a variable is a very basic way of debugging. The above code prints the total number of item in
the restaurantNames array, and its content after the cell deletion. By default, the console is
hidden in Xcode. Go up to the Xcode menu, select View > Debug Area > Activate Console to
bring up the console.

Now compile and run the app again. Delete the first row (i.e. Cafe Deadend) from the table
view. You'll find the output in the console under the debug area (see figure 11-3). At first, we
have 21 restaurant items in the array. After deleting a row, the number reduces to 20. And
from the output, "Cafe Deadend" was deleted completely.

As you can see, the app actually deletes the item from the arrays. It looks like the view doesn't
show the update. Yes, that's true. We only remove the data from the model but haven't notified
the table view to update its content.

202

Figure 11-3. Debug area and console

One way to ask the view to reload its content is by calling the reloadData method. So insert a
line of code in the method to reload the data in the table view:

override func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {

 if editingStyle == .delete {
 // Delete the row from the data source
 restaurantNames.remove(at: indexPath.row)
 restaurantLocations.remove(at: indexPath.row)
 restaurantTypes.remove(at: indexPath.row)
 restaurantIsVisited.remove(at: indexPath.row)
 restaurantImages.remove(at: indexPath.row)
 }

 tableView.reloadData()

Reloading UITableView

203

 print("Total item: \(restaurantNames.count)")
 for name in restaurantNames {
 print(name)
 }
}

When the reloadData method is called, the table view clears its content and reload the current
data from the restaurant arrays to display. Now compile and test the app again. When you
delete a restaurant, the table row should be removed.

The app works, but there is a better way to refresh the table view. Consider that we only need
to delete a single row, why don't we just remove that particular row from the table view? You're
allowed to use a method called deleteRows(at:with:) to delete a specific row (or multiple
rows) from the table view. Replace the reloadData method with the following line of code:

tableView.deleteRows(at: [indexPath], with: .fade)

The deleteRows(at:with:) method takes in two parameters: an array of index paths and the
animation type. Here we just pass the method with the current index path and specify to use
the fade animation. The animation type indicates how the deletion is to be animated. .fade
animation is commonly used. Optionally, you can change it to other animations such as
 .right , .left and .top . Compile and run the app again. When you confirm to delete a
record, the row fades out of the table view.

When you swipe across a table cell in the stock Mail app, you'll see a Trash button, and a More
button. The More button will bring up an action sheet providing a list of options such as Reply,
Flag, etc.

Delete a Row from UITableView

Swipe for More Actions Using UITableViewRowAction

204

Figure 11-4. Swipe for more in the Mail app

This swipe-for-more feature was first introduced in the stock iPhone apps in iOS 7. At that
time, Apple didn't make this feature available to developers. Starting from iOS 8, the iOS SDK
comes with a new class named UITableViewRowAction . You use this class to create custom
actions for table rows of any table view. To add custom actions to the table view's row, all you
need to do is implement the tableView(_:editActionsForRowAt:) method, and set the custom
actions as return objects.

Let's see how it works. Insert the following method in the
 RestaurantTableViewController.swift file:

override func tableView(_ tableView: UITableView, editActionsForRowAt
indexPath: IndexPath) -> [UITableViewRowAction]? {

 // Social Sharing Button
 let shareAction = UITableViewRowAction(style:
UITableViewRowActionStyle.default, title: "Share", handler: { (action,
indexPath) -> Void in

 let defaultText = "Just checking in at " +
self.restaurantNames[indexPath.row]
 let activityController = UIActivityViewController(activityItems:
[defaultText], applicationActivities: nil)
 self.present(activityController, animated: true, completion: nil)
 })

 // Delete button
 let deleteAction = UITableViewRowAction(style:

205

UITableViewRowActionStyle.default, title: "Delete",handler: { (action,
indexPath) -> Void in

 // Delete the row from the data source
 self.restaurantNames.remove(at: indexPath.row)
 self.restaurantLocations.remove(at: indexPath.row)
 self.restaurantTypes.remove(at: indexPath.row)
 self.restaurantIsVisited.remove(at: indexPath.row)
 self.restaurantImages.remove(at: indexPath.row)

 self.tableView.deleteRows(at: [indexPath], with: .fade)
 })

 return [deleteAction, shareAction]
}

The usage of UITableViewRowAction is very similar to that of UIAlertAction . You specify the
title, the style and the block of code to execute when a user taps the button. In this example, we
name the custom action as Share. When a user taps the button, it brings up an activity
controller for social sharing.

The UIActivityViewController class is a standard view controller that provides several
standard services, such as copying items to the clipboard, sharing content to social media sites,
sending items via Messages, etc. The class is very simple to use. Let's say you have a message
for sharing. All you need to do is create an instance of UIActivityViewController with the
message object, and then present the controller on screen. That is what we have done in the
above code snippet.

You may notice that we added a delete action button. Once you override the
 tableView(_:editActionsForRowAt:) method and provide your own implementation, the table
view will no longer generate the Delete button for you. This is why we need to create our own
Delete button.

The last line of the code is probably the most important part. It returns an array of
 UITableViewRowAction objects (i.e. deleteAction and shareAction) telling the table view to
create the buttons when someone swipes across the cell.

Compile and run the app. Swipe across a table row and it'll show you both Share and Delete
buttons. Tapping the Share button will bring up a share menu like the one shown in figure 11-5.

206

Figure 11-5. Swipe to Share button

The Twitter and Facebook buttons may not appear in your simulator. In this case, press shift-
command-H to go back to the Home screen. Select Settings > Twitter / Facebook, and sign in
with your account. Then re-launch the app. You should be able to share the content on social
media sites.

The UIActivityViewController class does not limit you from sharing content in text format. If
you pass it a UIImage object during initialization, your app will allow users to post images to
Twitter or Facebook. Modify the tableView(_:editActionsForRowAt:) method to the following:

override func tableView(_ tableView: UITableView, editActionsForRowAt
indexPath: IndexPath) -> [UITableViewRowAction]? {

 // Social Sharing Button
 let shareAction = UITableViewRowAction(style:
UITableViewRowActionStyle.default, title: "Share", handler: { (action,
indexPath) -> Void in

 let defaultText = "Just checking in at " +

207

self.restaurantNames[indexPath.row]

 if let imageToShare = UIImage(named:
self.restaurantImages[indexPath.row]) {
 let activityController = UIActivityViewController(activityItems:
[defaultText, imageToShare], applicationActivities: nil)
 self.present(activityController, animated: true, completion: nil)
 }
 })

 // Delete button
 let deleteAction = UITableViewRowAction(style:
UITableViewRowActionStyle.default, title: "Delete",handler: { (action,
indexPath) -> Void in

 // Delete the row from the data source
 self.restaurantNames.remove(at: indexPath.row)
 self.restaurantLocations.remove(at: indexPath.row)
 self.restaurantTypes.remove(at: indexPath.row)
 self.restaurantIsVisited.remove(at: indexPath.row)
 self.restaurantImages.remove(at: indexPath.row)

 self.tableView.deleteRows(at: [indexPath], with: .fade)
 })

 return [deleteAction, shareAction]
}

We just add a couple of lines in the above code to create an imageToShare object for sharing.
We first load the image by using the UIImage class, and then pass it to
 UIActivityViewController during initialization.

let activityController = UIActivityViewController(activityItems: [defaultText,
imageToShare], applicationActivities: nil)

 UIActivityViewController will automatically embed the image when the user shares the
restaurant to social media sites.

208

Figure 11-6. Posting content to Twitter and Facebook

When loading an image, it is possible that the image is failed to load. This is
why the UIImage class returns an optional during initialization. In Swift, we
use if let to verify if an optional contains a value or not. For details, you
can refer to the Optional section in the appendix.

By default, the action buttons are in red. The UITableViewRowAction class provides an option
for developers to customize its background color through the backgroundColor property:

shareAction.backgroundColor = UIColor(red: 48.0/255.0, green: 173.0/255.0,
blue: 99.0/255.0, alpha: 1.0)
deleteAction.backgroundColor = UIColor(red: 202.0/255.0, green: 202.0/255.0,
blue: 203.0/255.0, alpha: 1.0)

The UIKit framework provides a UIColor class to represent color. Many methods in UIKit

if let for Optionals

Customize UITableViewRowAction

209

require you to provide color using a UIColor object. The class comes with a number of
standard colors such as UIColor.blueColor() and UIColor.redColor() . If you want to use your
own color, you can create your own UIColor object using RGB component values. The
component values should be within 0 and 1. If you're a web designer or have some experience
with graphics design, you know that the RGB values are on a scale of 0 to 255. To conform with
the requirement of UIColor , you have to divide each of the component values by 255 when
creating a UIColor object. You can paste the code above before the following line of code in the
 tableView(_:editActionsForRowAt:) method:

return [deleteAction, shareAction]

Here we go. Test the app again and see if you like the new color. Otherwise, modify the color
code and change to your preferred color.

Figure 11-7. Posting content to Twitter and Facebook

Quick note: Like me, if you are not a designer, you may need some color
inspiration. You can check out Adobe Color CC (color.adobe.com) and Flat UI
Color Picker (flatuicolorpicker.com). You'll find a lot of color combinations
for designing your app.

Summary

210

http://color.adobe.com
http://www.flatuicolorpicker.com

In this chapter, I gave you a brief overview of MVC, showed you how to manage deletion in
table view, and taught you how to create a swipe-for-share button. You also learned how to use
 UIActivityViewController for implementing social sharing feature. The FoodPin app is getting
better and better. You should be proud of your achievement so far.

The MVC concept is important. If you're a programming newbie, it may take you some time to
fully understand the material. Feeling confused? Just take a break and grab yourself a coffee.
After your break, go over the chapter again. Probably you'll find it easier to digest.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinDeleteRow.zip.

In the next chapter, we'll take a look at something new and create a navigation controller.

211

http://www.appcoda.com/resources/swift3/FoodPinDeleteRow.zip

Just build something that you'd want to use today, not something you think people
would use somehow.

– Paul Graham

First things first, what's navigation controller? Like table views, navigation controllers are
another common UI components in iOS apps. It provides a drill-down interface for
hierarchical content. Take a look at the built-in Photos app, YouTube, and Contacts. They all

Chapter 12
Introduction to Navigation Controller
and Segue

212

use navigation controllers to display hierarchical content. Generally, you combine a navigation
controller with a stack of table view controllers to build an elegant interface for your apps.
Being that said, this doesn't mean you have to use both together. Navigation controllers can
work with any types of view controller.

Up till now, we just layout a table view controller in the storyboard of the FoodPin app.
Storyboarding allows you to do more than that. You can add more view controllers in the
storyboard, link them up, and define the transitions between them. All these can be done
without a line of code. When working with storyboards, scene and segues are two of the terms
you have to know. In a storyboard, a scene usually refers to the on-screen content (e.g. a view
controller). Segues sit between two scenes and represent the transition from one scene to
another. Push and Modal are two common types of transition.

Quick note: Since the release of Xcode 7, you can make storyboards more
managable and modular by using a feature called storyboard references. When
your project becomes large and complex, you can break a large storyboard into
multiple storyboards and link them up using storyboard references. This feature
is particularly useful when you are collaborating with your team members to
create a storyboard.

We'll continue to work on the Food Pin app by embedding the table view controller into a
navigation controller. When a user selects any of the restaurants, the app navigates to the next
screen to display the restaurant details.

Scenes and Segues in Storyboards

Creating Navigation Controller

213

Figure 12-1. FoodPin app with a navigation controller

If you've closed the FoodPin project, it is time to fire up Xcode and open the project again.
Select Main.storyboard to switch to the Interface Builder editor. Xcode provides an embed
feature that makes it easy to embed any view controller in a navigation controller. Select the
table view controller and click Editor in the menu. Choose Embed in > Navigation Controller.

Figure 12-2. Embed in option in Xcode menu

Xcode automatically embeds the controller in a navigation controller. Let's set the title of the
navigation bar. Select the navigation bar of the table view controller. Under the Attributes
inspector, change the value of the title to Food Pin.

214

Figure 12-3. Embedding the table view controller in a navigation controller

Now run the app and see how it looks. The app is the same as before, but added with a
navigation bar.

Easy, right? With just a few clicks, you've added a navigation bar to your app. What's missing is
another view controller that displays the restaurant details. When a user selects a restaurant,
the app transits to the detail view controller and displays the restaurant details.

In Interface Builder, drag a view controller from the Object library to create the detail view
controller. The primary purpose of this chapter is to show you how to implement navigation
controller. We'll keep the detail view as simple as possible. Let's just display the restaurant
photo in the detail view. Drag an Image View from Object Library to the view controller. Resize
it to fit the view, and add spacing constraints for each side of the image view. To ensure the
image is scaled properly, go to the Attributes inspector and change the mode from Scale to Fill
to Aspect Fill.

Adding a Detail View Controller

215

Figure 12-4. Adding an image view to the detail view controller

Now you have two view controllers configured in the storyboard. The question is how can you
connect them together? In storyboards, we need to connect them through a segue. In music, a
segue is a seamless transition between one piece of music and another. In storyboards, the
transition between two scenes is called segue.

The table view controller will transit to the detail scene when a user taps a cell. So we will add a
segue to connect the prototype cell and the detail scene. It's very straightforward to add a segue
object. Press and hold the control key, click on the prototype cell and drag to the Detail View
Controller.

216

Figure 12-5. Connecting scenes with segue

If you find it difficult to select the prototype cell in the storyboard editor, open the document
outline view, and drag from the prototype cell to the view controller. When you release the
buttons, a pop-up menu appears for you to choose the style for the segue. Select "Show" for the
style, and you'll see a connector between the view controllers.

217

Once chosen, Xcode automatically connects the prototype cell and the detail view controller
with a show segue.

218

Figure 12-7. A Segue is defined

In iOS 10, it supports the following types of segue:

Show - when the show style is used, the content is pushed on top of the current view
controller stack. A back button will be displayed in the navigation bar for navigating back
to the original view controller. Typically, we use this segue type for navigation controllers.
Show detail - similar to the show style, but the content in the detail (or destination) view
controller replaces the top of the current view controller stack. For example, if you select
show detail instead of show in the FoodPin app, there will be no navigation bar and back
button in the detail view.
Present modally - presents the content modally. When used, the detail view controller
will be animated up from the bottom and cover the entire screen on iPhone. A good
example of present modally segue is the "Add" feature of the built-in Calendar app. When
you click the + button in the app, it brings up a "New Event" screen from the bottom.
Present as popover - Present the content as a popover anchored to an existing view.

219

Popover is commonly found in iPad apps. Figure 12-8 shows you an example. Starting
from iOS 8, you can use popover segue on iPhone apps too.

Quick note: These segue types are deprecated since the release of iOS 8: Push,
Modal, Popover, Replace.

Figure 12-8. A sample popover segue in the stock Calendar app

Now, you're ready to run the app. Once launched, select a restaurant and the app should
navigate to the detail view controller. Meanwhile, the detail view controller just shows a blank
screen. The good news is that you already created a navigation interface.

Without writing a single line of code, you've added a navigation controller in your app.
However, I guess you got a couple of questions in your mind:

How can you pass the restaurant information from RestaurantTableViewController to the
detail view controller?
How can you display the photo of the selected restaurant in the detail view controller?

We'll look into them one by one in a minute.

Before moving on to the next section, let's make a little tweak. When you ran the app and select
a cell, it now navigates to the blank screen and show an action sheet that we have implemented
in chapter 10. We no longer need that action sheet. Later we'll add the same function in the

220

detail view controller. Therefore, remove the tableView(_:didSelectRowAt:) method from
 RestaurantTableViewController.swift .

Quick tip: Sometimes you may just want to comment out a block of code instead
of deleting them. Xcode provides a shortcut key to comment multiple lines of
code. First, select the block of code and press command+slash. Xcode
automatically marks the code block with comment indicators. To remove the
comment, do the same procedures again.

Figure 12-9. Use a shortcut key to comment a block of code quickly

Okay, let's go back to the detail view controller. Our goal is to update the image view in the
view controller with the selected restaurant. The view controller is now associated with the
 UIViewController class by default. The fact is the UIViewController class only provides the
fundamental view management model. There is no variable for storing the restaurant image.
Obviously, we have to extend UIViewController to create our own class so that we can add a
new variable for the image view.

Creating a New Class for the Detail View Controller

221

In the Project Navigator, right-click the FoodPin folder and select New File…. Choose Cocoa
Touch Class as the class template. Name the class RestaurantDetailViewController and set it
as a subclass of UIViewController . Click Next and save the file in your project folder.

Figure 12-10. Create a DetailViewController class

First, we want to establish a relationship between the view controller in Interface Builder and
the new class. Go to Main.storyboard , and assign the DetailViewController class to the detail
view controller. In Interface Builder, select the detail view controller and open the Identity
inspector. Change the custom class to RestaurantDetailViewController .

222

Figure 12-11. Assign a custom class for the detail view controller

There are a couple of things we have to add in the custom class:

Create a variable named restaurantImage – when user selects a restaurant in the table
view controller, there must be a way to pass the image name to the detail view. This
variable will be used for data passing.
Create an outlet called restaurantImageView for the image view – we need a reference to
update the image view of the detail view controller, so we have to create an outlet.

Okay, add the following code to the RestaurantDetailViewController class:

@IBOutlet var restaurantImageView:UIImageView!
var restaurantImage = ""

Next, establish a connection between the restaurantImageView variable and the image view of
the detail view controller. Go back to Main.storyboard . Right click the Restaurant Detail View

Adding Variables to the Custom Class

223

Controller object in the document outline. In the popover menu, connect the
 restaurantImageView outlet with the image view of the controller.

Figure 12-12. Establish the connection between the image view and the outlet

Now that you've linked up the outlet variable with the image view object in the storyboard, but
there is still one thing left. You haven't provided the image yet. The image view should display
the selected restaurant image. In the viewDidLoad method of the
 RestaurantDetailViewController class, add a line of code. Your method should look like this:

override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 restaurantImageView.image = UIImage(named: restaurantImage)
}

The viewDidLoad method is called when the view is loaded into memory. You can provide
additional customization of the view in this method. In the above, we simply set the image
view's image to the selected restaurant image.

224

Try to compile and run your app. Oops! The detail view is still blank after selecting a
restaurant. We still miss one thing. We haven't passed the image name of the selected
restaurant from the table view controller to the detail view controller. This is why the
 restaurantImage variable is not assigned with any value.

This comes to the core part of this chapter about data passing with segues. A segue manages
the transition between view controllers, and contains the view controllers involved in the
transition. When a segue is triggered, before the visual transition occurs, the storyboard
runtime notifies the source view controller (i.e. RestaurantTableViewController) by calling the
 prepare(for:sender:) method. The default implementation of the prepare(for:sender:)
method does nothing. By overriding the method, you can pass any relevant data to the new
controller, which is RestaurantDetailViewController in our project.

Segues can be triggered by multiple sources. As your storyboard becomes more complex, it is
very likely that you'll have more than one segue between view controllers. Therefore, the best
practice is to give each segue a unique identifier. This identifier is a string to distinguish one
segue from another. To assign an identifier for a segue, select the segue in the storyboard
editor, and then go to the Attributes inspector. Set the value of the identifier to
 showRestaurantDetail .

Passing Data Using Segues

225

Figure 12-13. Adding a segue identifier

With the segue configured, insert the following code in the RestaurantTableViewController
class to override the default implement of the prepareForSegue method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "showRestaurantDetail" {
 if let indexPath = tableView.indexPathForSelectedRow {
 let destinationController = segue.destination as!
RestaurantDetailViewController
 destinationController.restaurantImage =
restaurantImages[indexPath.row]
 }
 }
}

The first line of code is used to check the segue's identifier. The block of code is only executed
for the showRestaurantDetail segue. In the code block, we first retrieve the selected row by
accessing tableView.indexPathForSelectedRow . The indexPath object should contain the
selected cell.

226

A segue object contains both the source and destination view controllers involved in the
transition. You use segue.destination to retrieve the destination controller. In this case, the
destination controller is the RestaurantDetailViewController object. This is why we have to
downcast it by using the as! operator. Lastly, we pass the image name of the selected
restaurant to the destination controller.

Now, it's ready to test the app. Hit the Run button to compile and run the app. This time, your
app should work as expected. Select a restaurant in the table view, the detail view should
display the image of the selected item.

Wouldn't it be better to show more restaurant information in the detail view? In this exercise,
you're required to add a few labels for displaying the name, type and location of the selected
restaurant. Your resulting screen should look figure 12-14. If you understand how data passing
works, it shouldn't be difficult for you to make these changes.

Ready to Test

Your Exercise

227

Figure 12-14. The detail view with more restaurant information

I highly recommend you to complete this exercise before moving onto the next chapter. Not
only it helps you better understand the concept of segue and data passing, it will revise your
knowledge on stack views and auto layout.

In this chapter, I have walked you through the basics of navigation controllers and segues.
What we have built is really simple. We only pass the restaurant image from one view
controller to another. But, by now you should know how to handle data passing between view
controllers through segues.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinNavigationController.zip.

Summary

228

http://www.appcoda.com/resources/swift3/FoodPinNavigationController.zip

Most good programmers do programming not because they expect to get paid or
adulation by the public, but because it is fun to program.

Chapter 13
Introduction to Object Oriented
Programming

229

- Linus Torvalds

If you read from the very beginning of the book and have worked through all the projects,
you've gone pretty far. By now, you should be able to build an iPhone app with navigation
controllers and table views using storyboards. We'll further enhance the FoodPin app, and
improve the detail view. Did you manage to complete the previous exercise and develop your
own detail view? This shouldn't be difficult to implement if you understand the materials and I
intentionally left out that part for you as an exercise.

Anyway, we'll revisit it and show you how to improve the detail screen. But before that, I have
to introduce you the basics of Object Oriented Programming. In the next chapter, we'll build
on top of what we'll learn in this chapter and enhance the detail view screen.

Don't be scared by the term "Object Oriented Programming" or OOP in short. It's not a new
kind of programming language, but a programming concept. While some programming books
start out by introducing the OOP concept, I purposely left it out when I began writing the book.
I want to keep things simple and show you how to create an app. I don't want to scare you away
from building apps, just because of a technical term or concept. Having said that, I think it's
time to discuss OOP. As you're still reading the book, I believe you're determined to learn iOS
programming, and you want to take programming skills to the next level.

Okay, let's get started.

Like Objective-C, Swift is known as an Object Oriented Programming (OOP) language. OOP is
a way of constructing software application composed of objects. In other words, the code
written in an app in some ways deals with objects of some kinds. The UIViewController ,
 UIButton , UINavigationController , and UITableView objects that you have used are some
sample objects that come with the iOS SDK. Not only can you use the built-in objects, you have
already created your own objects in the project, such as DetailViewController and
 RestaurantTableViewCell .

First, why OOP? One important reason is that we want to decompose a complex software into
smaller pieces (or building block) which are easier to develop and manage. Here, the smaller

The Basic Theory of Object Oriented Programming

230

pieces are the objects. Each object has its own responsibility, and objects coordinate with each
other in order to make the software work. That is the basic concept of OOP. Take the Hello
World app, that we've built at the very beginning, as an example. The UIViewController object
is responsible for controlling the view of the app, and its view object is used for holding the
Hello World button. The UIButton (i.e. Hello World button) object implements a standard iOS
button on the touch screen and listens to any touch events. On the other hand, the
 UIAlertController object displays an alert message to a user. After all, these objects work
together to create the Hello World app.

Figure 13-1. Sample Objects in Hello World App

In Object Oriented Programming, an object shares two characteristics: properties and
functionalities. Let's consider a real world object – Car. A car has its own color, model, top
speed, manufacturer, etc. These are the properties of a car. In terms of functionalities, a car
should provide basic functions, such as accelerate, brake, steering, etc.

Software objects are conceptually similar to real-world objects. If we go back to the iOS world,
let's take a look at the properties and functionalities of the UIButton object in the Hello World
app:

231

Properties – Background, size, color and font are examples of the UIButton 's properties
Functionalities – When the button is tapped, it recognizes the tap event. The ability to
detect a touch is one of the many functions of UIButton .

In earlier chapters, you always come across the term method. In Swift, we create methods to
provide the functionalities of an object. Usually a method corresponds to a particular function
of an object.

Other than method and object, you have come across terms like instance and class . These are
also the common terms in OOP. Let me give you a brief explanation.

A class is a blueprint or prototype from which objects are created. Basically, a class consists of
properties and methods. Let's say, we want to define a Course class. A Course class contains
properties, such as name, course code and total number of students. This class represents the
blueprint of a course. We can use it to create different courses like iOS Programming course
with course code IPC101, Cooking course with course code CC101, etc. Here, the "iOS
Programming course" and "Cooking course" are known as the objects of the Course class. We
typically refer a single course as an instance of the Course class. For the sake of simplicity, the
term instance and object are sometimes interchangable.

A blueprint for a house design is like a class description. All the houses built from that
blueprint are objects of that class. A given house is an instance.

Source: http://stackoverflow.com/questions/3323330/difference-between-object-and-
instance

So why do we cover OOP in this chapter? There is no better way to explain the concept than
showing you an example. Take a look at the FoodPin project
(http://www.appcoda.com/resources/swift3/FoodPinNavigationController.zip) again.

In the RestaurantTableViewController class, we created multiple arrays to store the names,

Classes, Objects and Instances

Revisit the FoodPin Project

232

http://stackoverflow.com/questions/3323330/difference-between-object-and-instance
http://www.appcoda.com/resources/swift3/FoodPinNavigationController.zip

types, locations and images of the restaurants.

var restaurantNames = ["Cafe Deadend", "Homei", "Teakha", "Cafe Loisl", "Petite
Oyster", "For Kee Restaurant", "Po's Atelier", "Bourke Street Bakery", "Haigh's
Chocolate", "Palomino Espresso", "Upstate", "Traif", "Graham Avenue Meats",
"Waffle & Wolf", "Five Leaves", "Cafe Lore", "Confessional", "Barrafina",
"Donostia", "Royal Oak", "CASK Pub and Kitchen"]

var restaurantImages = ["cafedeadend.jpg", "homei.jpg", "teakha.jpg",
"cafeloisl.jpg", "petiteoyster.jpg", "forkeerestaurant.jpg", "posatelier.jpg",
"bourkestreetbakery.jpg", "haighschocolate.jpg", "palominoespresso.jpg",
"upstate.jpg", "traif.jpg", "grahamavenuemeats.jpg", "wafflewolf.jpg",
"fiveleaves.jpg", "cafelore.jpg", "confessional.jpg", "barrafina.jpg",
"donostia.jpg", "royaloak.jpg", "caskpubkitchen.jpg"]

var restaurantLocations = ["Hong Kong", "Hong Kong", "Hong Kong", "Hong Kong",
"Hong Kong", "Hong Kong", "Hong Kong", "Sydney", "Sydney", "Sydney", "New
York", "New York", "New York", "New York", "New York", "New York", "New York",
"London", "London", "London", "London"]

var restaurantTypes = ["Coffee & Tea Shop", "Cafe", "Tea House", "Austrian /
Causual Drink", "French", "Bakery", "Bakery", "Chocolate", "Cafe", "American /
Seafood", "American", "American", "Breakfast & Brunch", "Coffee & Tea", "Coffee
& Tea", "Latin American", "Spanish", "Spanish", "Spanish", "British", "Thai"]

var restaurantIsVisited = Array(repeating: false, count: 21)

In Object Oriented Programming, these data can be characterized as the properties of a
restaurant. Therefore, instead of storing these data in separate arrays, we can create a
 Restaurant class to store these data in an array of Restaurant objects.

233

Now let's tweak the FoodPin project, create the Restaurant class, and convert the data into
 Restaurant objects.

First, we'll start with the Restaurant class. In the project navigator, right click on the FoodPin
folder and select "New File…". Choose the "Swift File" template under Source and click "Next".
Name the file Restaurant.swift and save it in the project folder.

Creating a Restaurant Class

234

Figure 13-3. Creating a new class using the Swift File template

Once completed, define the Restaurant class in the Restaurant.swift file using the below
code:

class Restaurant {
 var name = ""
 var type = ""
 var location = ""
 var image = ""
 var isVisited = false

 init(name: String, type: String, location: String, image: String,
isVisited: Bool) {
 self.name = name
 self.type = type
 self.location = location

235

 self.image = image
 self.isVisited = isVisited
 }
}

You use the class keyword to define a class. The above code defines a Restaurant class with
five properties including name , type , location , image and isVisited . Except for
 isVisited , which is a boolean, the rest of the properties are strings. All properties are
initialized with a default value.

In Swift, you use self to differentiate between property names and arguments in
initializers. Because the arguments have the same name as the properties, we
use self to refer to the property of the class.

Figure 13-4. The use of self keyword

In Swift, all variables should be initialized with some values. Or you declare the variable as an
optional. For instance, if you do not have the initial value for the location properties, you
should declare the property like below. The question mark indicates the location variable may
or may not contain a value.

var location:String?

Quick note: If you want to learn more about Optionals in Swift, refer to the
appendix.

Use of self

236

Initialization is the process of preparing an instance of a class. When you create an object, the
initializer is called for setting an initial value for each stored property on that instance and
performing any extra setup, before the instance is ready to use. You use the init keyword to
define an initializer. In its simplest form, it looks like this:

init() {

}

You can also customize an initializer to take input parameters, just like the one we have
defined in the Restaurant class. Our initializer has five parameters. Each of them is given a
name and explicitly specified with a type. In the initializer, it initializes the values of the
property with the given values.

To create an instance of the Restaurant class, the syntax is like this:

Restaurant(name: "Thai Cafe", type: "Thai", location: "London", image:
"thaicafe.jpg", isVisited: false)

With a basic understanding of class and object initializations, let's go back to the FoodPin
project and combine multiple arrays into an array of Restaurant objects. First, delete the
restaurant-related arrays from the RestaurantTableViewController class:

var restaurantNames = ["Cafe Deadend", "Homei", "Teakha", "Cafe Loisl", "Petite
Oyster", "For Kee Restaurant", "Po's Atelier", "Bourke Street Bakery", "Haigh's
Chocolate", "Palomino Espresso", "Upstate", "Traif", "Graham Avenue Meats",
"Waffle & Wolf", "Five Leaves", "Cafe Lore", "Confessional", "Barrafina",
"Donostia", "Royal Oak", "CASK Pub and Kitchen"]

var restaurantImages = ["cafedeadend.jpg", "homei.jpg", "teakha.jpg",
"cafeloisl.jpg", "petiteoyster.jpg", "forkeerestaurant.jpg", "posatelier.jpg",
"bourkestreetbakery.jpg", "haighschocolate.jpg", "palominoespresso.jpg",
"upstate.jpg", "traif.jpg", "grahamavenuemeats.jpg", "wafflewolf.jpg",
"fiveleaves.jpg", "cafelore.jpg", "confessional.jpg", "barrafina.jpg",
"donostia.jpg", "royaloak.jpg", "caskpubkitchen.jpg"]

var restaurantLocations = ["Hong Kong", "Hong Kong", "Hong Kong", "Hong Kong",
"Hong Kong", "Hong Kong", "Hong Kong", "Sydney", "Sydney", "Sydney", "New
York", "New York", "New York", "New York", "New York", "New York", "New York",
"London", "London", "London", "London"]

Using the Array of Restaurant Objects

237

var restaurantTypes = ["Coffee & Tea Shop", "Cafe", "Tea House", "Austrian /
Causual Drink", "French", "Bakery", "Bakery", "Chocolate", "Cafe", "American /
Seafood", "American", "American", "Breakfast & Brunch", "Coffee & Tea", "Coffee
& Tea", "Latin American", "Spanish", "Spanish", "Spanish", "British", "Thai"]

var restaurantIsVisited = Array(repeating: false, count: 21)

Instead of using the above array, replace them with a new array of Restaurant objects:

var restaurants:[Restaurant] = [
 Restaurant(name: "Cafe Deadend", type: "Coffee & Tea Shop", location: "Hong
Kong", image: "cafedeadend.jpg", isVisited: false),
 Restaurant(name: "Homei", type: "Cafe", location: "Hong Kong", image:
"homei.jpg", isVisited: false),
 Restaurant(name: "Teakha", type: "Tea House", location: "Hong Kong", image:
"teakha.jpg", isVisited: false),
 Restaurant(name: "Cafe loisl", type: "Austrian / Causual Drink", location:
"Hong Kong", image: "cafeloisl.jpg", isVisited: false),
 Restaurant(name: "Petite Oyster", type: "French", location: "Hong Kong",
image: "petiteoyster.jpg", isVisited: false),
 Restaurant(name: "For Kee Restaurant", type: "Bakery", location: "Hong
Kong", image: "forkeerestaurant.jpg", isVisited: false),
 Restaurant(name: "Po's Atelier", type: "Bakery", location: "Hong Kong",
image: "posatelier.jpg", isVisited: false),
 Restaurant(name: "Bourke Street Backery", type: "Chocolate", location:
"Sydney", image: "bourkestreetbakery.jpg", isVisited: false),
 Restaurant(name: "Haigh's Chocolate", type: "Cafe", location: "Sydney",
image: "haighschocolate.jpg", isVisited: false),
 Restaurant(name: "Palomino Espresso", type: "American / Seafood", location:
"Sydney", image: "palominoespresso.jpg", isVisited: false),
 Restaurant(name: "Upstate", type: "American", location: "New York", image:
"upstate.jpg", isVisited: false),
 Restaurant(name: "Traif", type: "American", location: "New York", image:
"traif.jpg", isVisited: false),
 Restaurant(name: "Graham Avenue Meats", type: "Breakfast & Brunch",
location: "New York", image: "grahamavenuemeats.jpg", isVisited: false),
 Restaurant(name: "Waffle & Wolf", type: "Coffee & Tea", location: "New
York", image: "wafflewolf.jpg", isVisited: false),
 Restaurant(name: "Five Leaves", type: "Coffee & Tea", location: "New York",
image: "fiveleaves.jpg", isVisited: false),
 Restaurant(name: "Cafe Lore", type: "Latin American", location: "New York",
image: "cafelore.jpg", isVisited: false),
 Restaurant(name: "Confessional", type: "Spanish", location: "New York",
image: "confessional.jpg", isVisited: false),
 Restaurant(name: "Barrafina", type: "Spanish", location: "London", image:
"barrafina.jpg", isVisited: false),
 Restaurant(name: "Donostia", type: "Spanish", location: "London", image:

238

"donostia.jpg", isVisited: false),
 Restaurant(name: "Royal Oak", type: "British", location: "London", image:
"royaloak.jpg", isVisited: false),
 Restaurant(name: "CASK Pub and Kitchen", type: "Thai", location: "London",
image: "caskpubkitchen.jpg", isVisited: false)
]

Once you replaced the original arrays with the restaurants array, you'll end up with a few
errors in Xcode because some of the code still refer to the old arrays which have been removed.
We have to modify the code to use the new restaurants array. First, update the
 tableView(_:numberOfRowsInSection:) method:

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return restaurants.count
}

Instead of using the restaurantNames array, we get the count from the new restaurants array.

Secondly, update the tableView(_:cellForRowAtIndexPath:) method:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {

 let cellIdentifier = "Cell"
 let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier,
for: indexPath) as! RestaurantTableViewCell

 // Configure the cell...
 cell.nameLabel.text = restaurants[indexPath.row].name
 cell.thumbnailImageView.image = UIImage(named:
restaurants[indexPath.row].image)
 cell.locationLabel.text = restaurants[indexPath.row].location
 cell.typeLabel.text = restaurants[indexPath.row].type

 cell.accessoryType = restaurants[indexPath.row].isVisited ? .checkmark :
.none

 return cell
}

All the restaurant information are now retrieved from the restaurants array. We first locate
the restaurant object from the restaurants array. Then we use the dot-syntax to access the
property value.

239

Other than that, replace the tableView(_:commit:forRowAt:) method with the following code:

override func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {

 if editingStyle == .delete {
 // Delete the row from the data source
 restaurants.remove(at: indexPath.row)
 }

 tableView.deleteRows(at: [indexPath], with: .fade)
}

And, update the tableView(_:editActionsForRowAt:) method with the code below:

override func tableView(_ tableView: UITableView, editActionsForRowAt
indexPath: IndexPath) -> [UITableViewRowAction]? {

 // Social Sharing Button
 let shareAction = UITableViewRowAction(style:
UITableViewRowActionStyle.default, title: "Share", handler: { (action,
indexPath) -> Void in

 let defaultText = "Just checking in at " +
self.restaurants[indexPath.row].name

 if let imageToShare = UIImage(named:
self.restaurants[indexPath.row].image) {
 let activityController = UIActivityViewController(activityItems:
[defaultText, imageToShare], applicationActivities: nil)
 self.present(activityController, animated: true, completion: nil)
 }
 })

 // Delete button
 let deleteAction = UITableViewRowAction(style:
UITableViewRowActionStyle.default, title: "Delete",handler: { (action,
indexPath) -> Void in

 // Delete the row from the data source
 self.restaurants.remove(at: indexPath.row)

 self.tableView.deleteRows(at: [indexPath], with: .fade)
 })

 shareAction.backgroundColor = UIColor(red: 48.0/255.0, green: 173.0/255.0,
blue: 99.0/255.0, alpha: 1.0)
 deleteAction.backgroundColor = UIColor(red: 202.0/255.0, green:

240

202.0/255.0, blue: 203.0/255.0, alpha: 1.0)

 return [deleteAction, shareAction]
}

For the RestaurantDetailViewController class, instead of declaring variables for each
restaurant property, we now define a Restaurant object to save the restaurant information.
Replace the following variables:

var restaurantImage = ""
var restaurantName = ""
var restaurantType = ""
var restaurantLocation = ""

with:

var restaurant:Restaurant!

Quick note: As mentioned before, you have to give a default value when
declaring a variable. If not, you either use a question mark (?) or a
exclamation mark (!) in the declaration. In general, it is preferable to define
the variable as an optional by using a question mark (?). But if you are quite
sure that the variable will be assigned with a valid value, you can declare it
as an implicitly unwrapped optional through an exclamation mark (!).

And, update the viewDidLoad method with the following code:

override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 restaurantImageView.image = UIImage(named: restaurant.image)
 restaurantNameLabel.text = restaurant.name
 restaurantTypeLabel.text = restaurant.type
 restaurantLocationLabel.text = restaurant.location
}

Finally, change the prepare(for:sender:) method to the code below. We now pass the
 Restaurant object directly to the RestaurantDetailViewController class.

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "showRestaurantDetail" {
 if let indexPath = tableView.indexPathForSelectedRow {
 let destinationController = segue.destinationViewController as!

241

RestaurantDetailViewController
 destinationController.restaurant = restaurants[indexPath.row]
 }
 }
}

You can now run your app. The look & feel of the app is exactly the same as before. However,
we have refactored the code to use the new Restaurant class. By combining multiple arrays
into one, the code is now more readable.

Congratulations if you made it this far. I hope you're not bored by the chapter. What I have
covered is the basics of Object Oriented Programming. There are a lot more about the OOP
concepts, such as polymorphism. However, we do not have time to discuss in-depth in this
book. If you want to become a professional iOS developer, check out the references to learn
more. It'll take you a lot of practices to truly pick up OOP. Anyhow, if you manage to finish this
chapter, this is a good start.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinOOP.zip. In the next chapter, base on
what we've learned, you'll continue to tweak the detail view screen of the FoodPin app. It's
going to be fun!

Swift Programming Language - Classes and Structures
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programmi
ng_Language/ClassesAndStructures.html

Swift Programming Language - Initialization
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programmi
ng_Language/Initialization.html

Swift Programming Language - Inheritance
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_
Programming_Language/Inheritance.html

Summary

Further References

242

http://www.appcoda.com/resources/swift3/FoodPinOOP.zip
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Initialization.html
https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Inheritance.html

Object Oriented Programming from MIT Open Courseware
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-
introduction-to-electrical-engineering-and-computer-science-i-spring-2011/unit-1-software-
engineering/object-oriented-programming/

243

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/unit-1-software-engineering/object-oriented-programming/

To create something exceptional, your mindset must be relentlessly focused on the
smallest detail.

- Giorgio Armani

The detail view is a bit primitive. Wouldn't it be great to improve the detail view to the one
shown above? In this chapter we'll focus on two areas:

Improve the detail view of the FoodPin app.

Chapter 14
Detail View Enhancement and
Navigation Bar Customization

244

Customize the appearance of the navigation bar.

Okay, let's see how we can tweak the detail view first.

What we're going to do is to list the restaurant information including name, type and location
in a table view. The restaurant image will be used as the header of the table.

To begin, first download the FoodPin project from
http://www.appcoda.com/resources/swift3/FoodPinDetailViewStarter.zip. You can use your
own project if you've followed every step covered in the earlier chapters. However, you have to
delete everything in the detail view controller because we're going to redesign it from the
ground up.

Open the project and go to Main.storyboard . Select a table view object (note: it's a table view
instead of a table view controller) from the Object library and drag it to the detail view
controller. Resize it to fit the whole view, and the spacing constraints for each side of the table
view. Your screen should look like that in figure 14-1.

Figure 14-1. Adding a table view to the detail view controller

245

http://www.appcoda.com/resources/swift3/FoodPinDetailViewStarter.zip

Select the table view and set the prototype cells to 1 in the Attributes inspector. This adds a
prototype cell in the table view. Select the table view cell and set the identifier to Cell in the
Attribute inspector. Also set the row height to 36 points.

Figure 14-2. Adding a prototype cell in the table view

Next, we will add an image view to the table view's header. In the document outline view, drag
the image view to table view and place it right above the table view cell. Change the height of
the image view to 300 points in the Size inspector. Once done, the design of your detail view
should look like that in figure 14-3.

246

Figure 14-3. Image view added to the table view's header

Don't forget to establish a connection between the image view and the restaurantImageView
outlet. Right-click Restaurant Detail View Controller in the document outline, and connect
the outlet with the image view.

247

Figure 14-4. Establish a connection between the image view and the restaurantImageView
outlet

If you can't wait to test the app, run the project and have a quick look. The image is now
displayed in the table view's header (right above the rest of the table rows).

Before continuing the development of the detail view, I would like to sidetrack a little bit and
talk about the scaling mode of UIImageView . If you select the image view, you should find the
mode option in the Attributes inspector. The UIImageView class is a subclass of UIView , which
provides a content mode property to specify how a view adjusts its content. Here are the three
common scaling modes you usually use:

Scale to Fill (default)
Aspect Fit
Aspect Fill

By default, the UIImageView object is set to Scale To Fill . In this mode, the image view scales
its image to fit the view's size. The aspect ratio of the image may be changed due to the scaling.

Image View Scaling

248

If you run the FoodPin app and select For Kee Restaurant, you may aware that the image
doesn't keep the original aspect ratio.

If you change the mode to Aspect Fit, the aspect ratio of the image will be maintained.
However, it may leave some extra spaces on both sides of the image.

The Aspect Fill mode is the best fit for the FoodPin app. In this mode, the image view scales
the image to fill the size of the view. The aspect ratio is maintained, though some parts of the
image may not be displayed. Please make sure you enable "Clip to Bounds" in the drawing
section when using this mode. Otherwise, the image may extend to the table view area. Figure
14-5 illustrates the results of the three content modes.

Figure 14-5. Image View Scaling Mode

If you read the book from the very beginning, you should know how to customize the prototype
cell. We'll add two labels to the cell. One is for the field name and the other one is for the field
value.

Customizing the Prototype Cell

249

So drag a Label object from the Object library and place it in the prototype cell. Name the label
Field and set the font style to Medium (or whatever font style you want). Drag another label to
the cell and set the name to Value. Again, we use stack view to layout these two buttons. Select
both labels and click the Stack button in the layout bar to embed them in a horizontal stack
view.

Figure 14-6. Customizing the prototype cell

Next, define the auto layout constraints for the stack view. The resulting layout of the cell will
look like figure 14-7.

Figure 14-7. Cell layout

250

To achieve the layout, you have to define a few constraints for the stack view and the labels:

Add a constraint such that the stack view is vertically centered in the cell.
Add spacing constraints for the left and right sides of the stack view. For the spacing
constraint of the trailing side, the constant should be set to zero.
Add another constraint for the labels such that the width of the Field label is 50% of the
Value label.

You can follow the procedures illustrated in figure 14-8 and figure 14-9 to define the first two
constraints.

Figure 14-8. Center the stack view vertically and add spacing constraints

251

Figure 14-9. Change the constant of the trailing spacing constraint to zero

The procedures should be very similar to you as we have covered them in earlier chapters.
After defining the constraints, the cell layout should look like that in figure 14-10.

Figure 14-10. Change the constant of the trailing spacing constraint to zero

As a sidenote, let's me introduce you a layout property called Content Hugging
Priority. So far we only define the layout constraints of the stack view, we
let the stack view handle the layout of the labels. In order to fulfill the
layout requirements, the stack view either needs to expand the Field label or
the Value label.

The question is: why did the stack view choose to expand the Field label
instead of the Value label?

If you select the Field label and go to the Size inspector, you will find the

Content Hugging Priority

252

content hugging priority of the label in both horizontal and vertical
direction. By default, it is set to 251. The stack view relies on this priority
to determine if it should expand the Field label or the Value label. A view
with higher content hugging priority resists being made larger and remains its
intrinsic size. Because both labels have the same priority, the stack view
simply expands the Field label.

Now if you change the horizontal content hugging priority of the Field label
from 251 to 261. Once the priority is increased, the Field label is resized to
its intrinsic size, while the Value label is expanded.

Figure 14-11. The cell layout changes as the content hugging priority is
updated

Now that you've defined the first two layout constraints, how can you define a constraint such
that the width of the Field label is 50% of the Value label?

Figure 14-12. Expected layout for both labels

253

To do so, control-drag horizontally from the Field label to the Value label. In the shortcut
menu, select Equal Widths . By setting this option, both labels have the same width.

Figure 14-13. Control-drag horizontally from the Field label to the Value label

Now select the "Field.width = Value.width" constraint and go to the Size inspector. Change the
value of Multiplier from 1 to 0.5 . The width of the Field label is changed so that it is 50% of
that of the Value label.

Figure 14-14. Change the multiplier to 0.5

Cool! You've completed the design of the prototype cell.

254

In order to use it, as you know, we have to create a custom class to pair with it. Right click the
FoodPin folder in the project navigator, and then click "New File...". Choose the "Cocoa Touch
Class" template and proceed. Name the class RestaurantDetailTableViewCell and set it as a
subclass of UITableViewCell . Click Next and save the file.

Figure 14-15. Creating a new class for the prototype cell

Open the RestaurantDetailTableViewCell.swift file and add two outlet variables for both Field
and Value labels:

@IBOutlet var fieldLabel:UILabel!
@IBOutlet var valueLabel:UILabel!

The rest of the procedures should be very familiar to you. Go back to the Interface Builder and

255

select the prototype cell. In the Identity inspector, set the custom class to
 RestaurantDetailTableViewCell .

Now establish the connections beatween the outlet variables and the label objects in the
storyboard. Right click the Cell in the document outline view to bring up the context menu.
Connect fieldLabel with the Field label object and valueLabel with the Value label object
respectively.

Figure 14-16. Connecting the outlets

The RestaurantDetailViewController class is a subclass of UIViewController . As you've
learned in chapter 8, we have to adopt both the UITableViewDataSource and
 UITableViewDelegate protocols for displaying content in the table view.

In RestaurantDetailViewController.swift , update the class declaration to adopt the protocols:

Updating the RestaurantDetailViewController Class

256

class RestaurantDetailViewController: UIViewController, UITableViewDataSource,
UITableViewDelegate {

We then populate the restaurant information by implementing the required methods of the
 UITableViewDataSource protocol:

func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) ->
Int {
 return 4
}

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for:
indexPath) as! RestaurantDetailTableViewCell

 // Configure the cell...
 switch indexPath.row {
 case 0:
 cell.fieldLabel.text = "Name"
 cell.valueLabel.text = restaurant.name
 case 1:
 cell.fieldLabel.text = "Type"
 cell.valueLabel.text = restaurant.type
 case 2:
 cell.fieldLabel.text = "Location"
 cell.valueLabel.text = restaurant.location
 case 3:
 cell.fieldLabel.text = "Been here"
 cell.valueLabel.text = (restaurant.isVisited) ? "Yes, I've been here
before" : "No"
 default:
 cell.fieldLabel.text = ""
 cell.valueLabel.text = ""
 }

 return cell
}

The above code is very straightforward. The app displays 4 rows of restaurant information
including name, type, location and been here. Other than if statement, you can use switch
to control the program flow and execute different branches of code. If you've studied other
programming languages before, the switch statement in Swift has been significantly improved
and is more powerful than its counterparts. One highlight is the cases of switch statement do
not "fall through" to the next case. In other words, the entire switch statement finishes its

257

execution when a case is matched, without requiring an explicit break statement. You can learn
more about switch statement in the appendix.

Okay, the code of the RestaurantDetailViewController class is ready. However, we haven't
established the connection with the table view in storyboard.

In the document outline of the Interface Builder editor, right click the Table View object and
connect the dataSource outlet with Restaurant Detail View Controller. Repeat the same
procedure to connect the delegate outlet.

Figure 14-17. Connecting the data source and delegate of the table view

Hit the Run button and test your app. The detail view now displays more information about
the selected restaurant.

Ready to Test

258

Figure 14-18. Detail view of a sample restaurant

The table view is pretty nice. But there are a number of things we can implement to make it
even better:

Change the background color of the table view
Remove the separators of the empty rows
Change the color of the separator

Before we dive into the customization, add an outlet variable in the
 RestaurantDetailViewController class so that we can establish a connection with the table view
object in the storyboard.

@IBOutlet var tableView:UITableView!

Go to Interface Builder. Right click Table View and drag the + icon of the New Reference
Outlet to Restaurant Detail View Controller . Select tableView when prompted.

Customizing the Table View Appearance

259

To change the background color of the table view, set a new UIColor object using the
 backgroundColor property. Insert the following line in the viewDidLoad method:

tableView.backgroundColor = UIColor(red: 240.0/255.0, green: 240.0/255.0, blue:
240.0/255.0, alpha: 0.2)

This will change the table background to light gray. Feel free to change it to your preferred
color. If you run the app, the background color of the table view is partially changed.

Quick tip: The color change is subtle. If you're not aware of the color change,
you may change it to a more vibrant color:

tableView.backgroundColor = UIColor(red: 0.0/255.0, green: 240.0/255.0, blue:
240.0/255.0, alpha: 0.2)

For those cells with content, the background color is still in white. You'll need to insert the
following line of code in the tableView(_:cellForRowAt:) method. Put the line of code right
before return cell :

cell.backgroundColor = UIColor.clear

This makes the cells transparent, so that the background color of the table view can be seen.

The second item we want to tweak is to remove the separators of the empty rows. It can be
achieved by setting the footer of the table view to blank. Add the following line to the
 viewDidLoad method:

tableView.tableFooterView = UIView(frame: CGRect.zero)

Lastly, we change the color of the separators for content rows. Again, it can be done by a line of
code. Put the following code in the viewDidLoad method:

tableView.separatorColor = UIColor(red: 240.0/255.0, green: 240.0/255.0, blue:
240.0/255.0, alpha: 0.8)

Now it's ready to test the app. You'll find a slight color change for the background and
separator. If you find the color change is too subtle. feel free to change to whatever color as you
like.

260

Figure 14-19. Restaurant Detail View after table view customizations

Now that you know how to customize the appearance of table view. The next thing I'm going to
show you is to customize the appearance of navigation bar. Here are a few changes we'll make:

Changing the background color of navigation bar
Changing the font of navigation bar title
Customizing the color of back button
Changing the title of back button

Quick tip: User will pay a premium for a great looking app. Even if you're not
an app designer, try your best to make your app stand out. If you need some
inspirations, check out pttrns.com, inspired-ui.com and mobile-patterns.com.
You will find a tons of iPhone and iPad user interface patterns.

Apple provides the Appearance API for developers to customize the visual appearance of the
UIKit controls across the entire application, through an appearance proxy of a specific class.
For example, to customize the appearance of navigation bar, you use appearance() to get the
appearance proxy of the class:

Customizing the Appearance of Navigation Bar

261

http://pttrns.com
http://inspired-ui.com
http://mobile-patterns.com

UINavigationBar.appearance()

To modify the background color of navigation bar, set the barTintColor property to your
preferred color:

UINavigationBar.appearance().barTintColor = UIColor(red: 216.0/255.0, green:
74.0/255.0, blue: 32.0/255.0, alpha: 1.0)

The title style can be changed by setting the titleTextAttributes property:

if let barFont = UIFont(name: "Avenir-Light", size: 24.0) {
 UINavigationBar.appearance().titleTextAttributes =
[NSForegroundColorAttributeName:UIColor.white, NSFontAttributeName:barFont]
}

You can specify the font, text color, text shadow color, and text shadow offset for the title in the
text attributes dictionary. In the above code, we specify Avenir-Light as the font and set the
color to white .

You may wonder how to find out the name of iOS font. The easiest way is to
check out http://iosfonts.com. The site lists out all the available fonts in
iOS.

The tintColor property controls the color of navigation items and bar button items. You use it
to change the color of back button.

UINavigationBar.appearance().tintColor = UIColor.white

The AppDelegate is sort of the entry point of the application. The class is generated by Xcode
when your project is created from a project template. Typically we put these customization
code in the AppDelegate class as the changes apply to the entire application.

Insert the following code in the application(_:didFinishLaunchingWithOptions:) method:

UINavigationBar.appearance().barTintColor = UIColor(red: 216.0/255.0, green:
74.0/255.0, blue: 32.0/255.0, alpha: 1.0)
UINavigationBar.appearance().tintColor = UIColor.white

Where to find the name of iOS font?

262

http://iosfonts.com

if let barFont = UIFont(name: "Avenir-Light", size: 24.0) {
 UINavigationBar.appearance().titleTextAttributes =
[NSForegroundColorAttributeName:UIColor.white, NSFontAttributeName:barFont]
}

That's it! You can now run your app and have a look. With the Appearance API, it's pretty easy
to customize the navigation bar.

Figure 14-20. Styling the navigation bar

Presently, the back button of the navigation bar shows the app's title. What if you want to
remove the back button title and just keep the back arrow? By default, the title of back button
is pulled from the title of the source controller in a segue.

263

Figure 14-21. Back button with title

To remove the title, all you need to do is update the backBarButtonItem property of the
navigation item and assign it with a bar button item with a blank title. But remember this
update should be applied in the viewDidLoad method of the source view controller. In this
case, it's the RestaurantTableViewController class. So update the viewDidLoad method like
this:

override func viewDidLoad() {
 super.viewDidLoad()

 // Remove the title of the back button
 navigationItem.backBarButtonItem = UIBarButtonItem(title: "", style:
.plain, target: nil, action: nil)
}

Let's make one more change. The navigation bar title in the detail view is currently empty. I
want to display the restaurant name in the navigation bar. It's super easy to do so. You can
simply set the title of the detail view to the name of restaurant. Insert the following line of code
in the viewDidLoad method of the RestaurantDetailViewController class:

title = restaurant.name

If you test the app again, the navigation bar in the detail view should like this.

Figure 14-22. Back button without title

Hiding a Navigation Bar on Swipe

264

Since iOS 8, Apple has introduced a nifty feature which allows you to hide a navigation bar on
swipe or tap. This feature shouldn't be new to you. When scrolling down a web page in mobile
Safari, the address bar is condensed and the toolbar goes away. Similar feature can be found in
some of the popular apps such as Indiegogo.

Prior to iOS 8, you need to develop your own solution if you want to hide a navigation on
swipe. Starting from iOS 8, Apple opened up the feature for all iOS developers. You'll need a
click or a line of code to enable this feature.

In the Interface Builder editor, select the navigation controller in the navigation controller
scene. In the Attribute inspector, there is an option named On Swipe under the navigation
controller section. When enabled, your app will hide the navigation bar, as well as, toolbar (if
any) when a user scrolls down the content view. The bars appear again when the user swipes
back up.

Figure 14-23. On Swipe option for hiding the bars

This change applies to all navigation bars of the entire app. That means, both the restaurant

265

table view controller and the detail view controller are automatically enabled with the feature.
Now what if we just want to hide the navigation bar for the restaurant table view controller? It
would be better for us to do this in code.

Quick note: If you've enabled the On Swipe option in storyboard, please disable
it before moving on.

To hide the bars on swipe, you set the hidesBarsOnSwipe property to true using the code
below:

navigationController?.hidesBarsOnSwipe = true

Let's add the above line of code in the viewDidLoad method of RestaurantTableViewController .
After that, run the app to have a quick test. Swipe up the table view and the navigator bar will
be hidden. It works pretty good.

However, if you select a restaurant to navigate to the detail view, this swipe-to-hide feature is
enabled too. Okay, we want to disable the swipe-to-hide feature in the detail view. Let's add the
following code in the viewDidLoad method of RestaurantDetailViewController to disable it:

navigationController?.hidesBarsOnSwipe = false

Run the app again to test it. Does it fix the issue?

At first, it looks like we have fixed the navigation bar issue. But if you test more thoroughly,
you will find other issues as illustrated in figure 14-24.

266

Figure 14-24. Possible issues when setting the hidesBarsOnSwipe property in the
viewDidLoad method

First, keep in mind that the viewDidLoad method is called only once when the view is first
loaded. After that, it won't be called again. In other words, if you navigate to the detail view,
the hidesBarsOnSwipe property is set to false . And the value will keep intact even when you
navigate back to the table view controller. This is the reason why the navigation bar won't hide
(Problem #1).

For Problem #2, the hidden navigation bar is carried over to the detail view. Even if we
manage to set the hidesBarsOnSwipe property back to false in the viewDidLoad method, it
won't display the navigation bar. We have to explicitly tell the app to re-display the navigation
bar.

267

Fortunately, the UIViewController class provides several methods that respond to view events.
Unlike the viewDidLoad method, these methods are called every time when a view is displayed
or removed. When a view is displayed, both viewWillAppear and viewDidAppear methods are
invoked. The viewWillAppear method is called when a view is about to display, whereas the
 viewDidAppear method is called when a view is displayed on screen.

Apparently, the viewWillAppear method fits our need. Insert the following code in the
 RestaurantTableViewController class:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 navigationController?.hidesBarsOnSwipe = true
}

For the RestaurantDetailViewController class, add the following code snippet:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 navigationController?.hidesBarsOnSwipe = false
 navigationController?.setNavigationBarHidden(false, animated: true)
}

As the viewWillAppear method is called every time when a view is displayed, we can toggle the
 hidesBarsOnSwipe property perfectly. The extra line of code in the
 RestaurantDetailViewController class explicitly tells the app to unhide the navigation bar. This
resolves problem #2. One thing to take note is that you must call the super method at some
point of the implementation. After the changes, run the app and have fun!

The style of the status bar doesn't go well with the color of the navigation bar. Would't it be
great if we can change the color of status bar to white? This is the last thing I want to discuss
with you in this chapter.

Change the Style of Status Bar

268

Figure 14-25. Default style of status bar

In older versions of iOS, the status bar was always in black and there is not much you can
change. From iOS 7 and onwards, you're allowed to change the appearance of the status bar
per view controller. You can use a UIStatusBarStyle constant to specify whether the status bar
content should be dark or light. By default, the status bar displays dark content. In other
words, items such as time, battery indicator and Wi-Fi signal are displayed in dark color, just
like the one shown in figure 14-25.

You may want to change the style of status bar from dark to light to make the app look better.
There are two ways to do this. First, you're allowed to control the style of the status bar in any
view controllers by overriding the preferredStatusBarStyle method:

override func preferredStatusBarStyle() -> UIStatusBarStyle {
 return .lightContent
}

Alternatively, you can set it through the statusBarStyle property of UIApplication . This lets
you change the style of the status bar for the entire app. By default, however, the Xcode project
is enabled to use "View controller-based status bar appearance". This means you can control
the appearance of the status per view controller. If you want to change the style of the status
globally, you need to first opt out the View controller-based status bar appearance.

Select the Info.plist in project navigator. Right click any blank area and select Add Row.
Insert a new key named View controller-based status bar appearance and set the value to
 NO . Refer to figure 14-26 for details.

269

Figure 14-26. Adding a key to disable view controller-based status bar appearance

By disabling View controller-based status bar appearance, you can change the appearance of
the status bar by using the following code:

UIApplication.shared.statusBarStyle = .lightContent

Normally you put the above code in the application(_:didFinishLaunchingWithOptions:)
method of the AppDelegate class. If you apply the change using one of the approaches, the
status bar will be updated to the light style.

Figure 14-27. Status bar in light style

This exercise will help you refresh your memory of Object Oriented Programming. Tweak the
app and see if you can display a Phone field in the detail view.

Exercise #1

270

Figure 14-28. Adding phone number to the detail view

Hint: You'll need to add a phone number property in the Restaurant class and
modify the initialization of the `restaurants` variable in
`RestaurantTableViewController`.

Instead of using the Avenir font for the navigation bar header, your user prefers to use the
Avenir Next Condensed font with Demi Bold style. Please make the change accordingly. Your
final result should look like this:

Figure 14-29. Changing the font for the navigation bar

Exercise #2

271

Hint: Go to iosfonts.com to look up the actual font name on iOS.

I hope you love this chapter and love the app you created. Congratulations again if you made
this far. You've built a polished Restaurant app. It's not a complex app but you've managed to
use some common components such as table view and navigation controller in iOS. What's
more you've learned how to customize navigation bar and table view. Remember you should
try your best to make your app stand out from others.

For reference, you can download the complete project from
http://www.appcoda.com/resources/swift3/FoodPinDetailView.zip.

In the next chapter, we'll explore a great feature known as Self Sizing Cell.

Summary

272

http://www.appcoda.com/resources/swift3/FoodPinDetailView.zip

Fun is one of the most important and underrated ingredients in any successful venture.
If you're not having fun, then it's probably time to call it quits and try something else.

- Richard Branson

In iOS 8, Apple introduces a new feature for UITableView known as Self Sizing Cells. This is
seriously one of the most useful features of the SDK. Prior to iOS 8, if you want to display
dynamic content in a table view with multiple rows, you have to calculate the row height of a

Chapter 15
Self Sizing Cells and Dynamic Type

273

cell manually. Now iOS is capable to determine the row height for you. All you need to do is
write a couple lines of code and make sure you define all the layout constraints for the
prototype cell (that we have already done).

Self sizing cells are particularly useful to support Dynamic Type. By using Dynamic Type, your
app can respond to the text change and allow users to customise the text size to fit their own
needs. Dynamic Type is another topic which will be covered in this chapter.

Let's start with self sizing cells. In summary, here are the procedures to implement self sizing
cells:

Add auto layout constraints in your prototype cell
Specify the estimatedRowHeight property of your table view
Set the rowHeight property of your table view to UITableViewAutomaticDimension

If we express the last two points in code, it looks like this:

tableView.estimatedRowHeight = 36.0
tableView.rowHeight = UITableViewAutomaticDimension

With just two lines of code, you instruct the table view to calculate the cell's size, matching its
content and render it dynamically. This self sizing cell feature should save you tons of code and
time. You're gonna love it. There is no better way to learn a new feature than using it. We'll
continue to develop the FoodPin app and turn the table view cell in the detail view into self
sizing cell.

So far, the cell content fits perfectly without any truncation because the data didn't contain any
lengthy text. To test out self sizing cells, we will first update the restaurants array and change
each of the restaurant location to a full address.

For your convenience, you can download the starter project from
http://www.appcoda.com/resources/swift3/FoodPinSelfSizingCellStarter.zip. The project is
exactly the same as the one you work on in the previous chapter, except that I have updated the
 restaurants array to the following:

var restaurants:[Restaurant] = [
 Restaurant(name: "Cafe Deadend", type: "Coffee & Tea Shop", location: "G/F,

274

http://www.appcoda.com/resources/swift3/FoodPinSelfSizingCellStarter.zip

72 Po Hing Fong, Sheung Wan, Hong Kong", phone: "232-923423", image:
"cafedeadend.jpg", isVisited: false),
 Restaurant(name: "Homei", type: "Cafe", location: "Shop B, G/F, 22-24A Tai
Ping San Street SOHO, Sheung Wan, Hong Kong", phone: "348-233423", image:
"homei.jpg", isVisited: false),
 Restaurant(name: "Teakha", type: "Tea House", location: "Shop B, 18 Tai
Ping Shan Road SOHO, Sheung Wan, Hong Kong", phone: "354-243523", image:
"teakha.jpg", isVisited: false),
 Restaurant(name: "Cafe loisl", type: "Austrian / Causual Drink", location:
"Shop B, 20 Tai Ping Shan Road SOHO, Sheung Wan, Hong Kong", phone: "453-
333423", image: "cafeloisl.jpg", isVisited: false),
 Restaurant(name: "Petite Oyster", type: "French", location: "24 Tai Ping
Shan Road SOHO, Sheung Wan, Hong Kong", phone: "983-284334", image:
"petiteoyster.jpg", isVisited: false),
 Restaurant(name: "For Kee Restaurant", type: "Bakery", location: "Shop J-
K., 200 Hollywood Road, SOHO, Sheung Wan, Hong Kong", phone: "232-434222",
image: "forkeerestaurant.jpg", isVisited: false),
 Restaurant(name: "Po's Atelier", type: "Bakery", location: "G/F, 62 Po Hing
Fong, Sheung Wan, Hong Kong", phone: "234-834322", image: "posatelier.jpg",
isVisited: false),
 Restaurant(name: "Bourke Street Backery", type: "Chocolate", location: "633
Bourke St Sydney New South Wales 2010 Surry Hills", phone: "982-434343", image:
"bourkestreetbakery.jpg", isVisited: false),
 Restaurant(name: "Haigh's Chocolate", type: "Cafe", location: "412-414
George St Sydney New South Wales", phone: "734-232323", image:
"haighschocolate.jpg", isVisited: false),
 Restaurant(name: "Palomino Espresso", type: "American / Seafood", location:
"Shop 1 61 York St Sydney New South Wales", phone: "872-734343", image:
"palominoespresso.jpg", isVisited: false),
 Restaurant(name: "Upstate", type: "American", location: "95 1st Ave New
York, NY 10003", phone: "343-233221", image: "upstate.jpg", isVisited: false),
 Restaurant(name: "Traif", type: "American", location: "229 S 4th St
Brooklyn, NY 11211", phone: "985-723623", image: "traif.jpg", isVisited:
false),
 Restaurant(name: "Graham Avenue Meats", type: "Breakfast & Brunch",
location: "445 Graham Ave Brooklyn, NY 11211", phone: "455-232345", image:
"grahamavenuemeats.jpg", isVisited: false),
 Restaurant(name: "Waffle & Wolf", type: "Coffee & Tea", location: "413
Graham Ave Brooklyn, NY 11211", phone: "434-232322", image: "wafflewolf.jpg",
isVisited: false),
 Restaurant(name: "Five Leaves", type: "Coffee & Tea", location: "18 Bedford
Ave Brooklyn, NY 11222", phone: "343-234553", image: "fiveleaves.jpg",
isVisited: false),
 Restaurant(name: "Cafe Lore", type: "Latin American", location: "Sunset
Park 4601 4th Ave Brooklyn, NY 11220", phone: "342-455433", image:
"cafelore.jpg", isVisited: false),
 Restaurant(name: "Confessional", type: "Spanish", location: "308 E 6th St
New York, NY 10003", phone: "643-332323", image: "confessional.jpg", isVisited:
false),

275

 Restaurant(name: "Barrafina", type: "Spanish", location: "54 Frith Street
London W1D 4SL United Kingdom", phone: "542-343434", image: "barrafina.jpg",
isVisited: false),
 Restaurant(name: "Donostia", type: "Spanish", location: "10 Seymour Place
London W1H 7ND United Kingdom", phone: "722-232323", image: "donostia.jpg",
isVisited: false),
 Restaurant(name: "Royal Oak", type: "British", location: "2 Regency Street
London SW1P 4BZ United Kingdom", phone: "343-988834", image: "royaloak.jpg",
isVisited: false),
 Restaurant(name: "CASK Pub and Kitchen", type: "Thai", location: "22
Charlwood Street London SW1V 2DY Pimlico", phone: "432-344050", image:
"caskpubkitchen.jpg", isVisited: false)
]

The values of the location property are updated with the full address. If you run the app and
navigate to the detail view, you should notice that the location is truncated. We will modify the
app so that the cell height can be adjusted automatically to fit its content.

You cannot use self sizing cells without applying auto layout. iOS relies on the layout
constraints to calculate the size of the cell. The very first step in implementing self sizing cells
is to define the layout constraints for the prototype cell. For our FoodPin project, we have
already defined the constraints in the earlier chapter. So let's enable self sizing cells and see if
it works.

Adding Auto Layout Constraints for the Prototype Cell

276

Figure 15-2. Our prototype cell has been defined with the necessary layout constraints

To enable self sizing cells for the detail view, add the following code in the viewDidLoad
method of the RestaurantDetailViewController class:

tableView.estimatedRowHeight = 36.0
tableView.rowHeight = UITableViewAutomaticDimension

As explained earlier, the first line of code sets the estimated row height of the cell. That's the
height of the existing prototype cell. The second line changes the rowHeight property to
 UITableViewAutomaticDimension , which is the default row height in iOS 10.

If you run the app now, the cell is not resized. The reason is that we have explicitly set the
"number of lines" of the Value label to 1 . In other words, the label can only display a single
line of content.

Now go to the Interface Builder editor and select the Value label. In the Attributes inspector,
change the value of the Lines option to 0 . The label will automatically adjust the number of
lines to fit the content.

Enabling Self Sizing Cells

Setting the Label Lines to Zero

277

Figure 15-3. Changing the Lines option of the Value label

That's it. You can now test the app. The cell now resizes dynamically even in landscape mode.

Figure 15-4. Self sizing cells in the FoodPin app

278

Everything looks great. But if you look into the console, you may notice the following warning:

Warning once only: Detected a case where constraints ambiguously suggest a
height of zero for a tableview cell's content view. We're considering the
collapse unintentional and using standard height instead.

On top of that, if you navigate to the Homei restaurant, the location cell is not correctly resized.
It seems iOS can't calculate the correct row height based on the existing constraints. To resolve
the issues, we will add the spacing constraints for the top and bottom sides of the stack view.
This will give iOS more information about the cell's layout.

Figure 15-5. The location field is not correctly resized for address that takes up more than
three rows

Now select the stack view in the prototype cell. Click the Pin button to add a couple of spacing
constraints. Select the bar of the top and bottom side. Make sure the bar turns into solid red
and then click Add 2 Constraints to add the spacing constraints.

Adding Spacing Constraints

279

Figure 15-6. Adding spacing constraints for the top and bottom sides of the stack view

It's time to test out the changes and see if it resolves the issue. Run the project in a iPhone
simulator, and choose the Homei restaurant. Unfortunately, it doesn't work yet. In the console,
it shows some errors related to layout constraints:

[LayoutConstraints] Unable to simultaneously satisfy constraints.
 Probably at least one of the constraints in the following list is one you
don't want.
 Try this:
 (1) look at each constraint and try to figure out which you don't
expect;
 (2) find the code that added the unwanted constraint or constraints and
fix it.
(
 "<NSLayoutConstraint:0x60000028d700 UIStackView:0x7fa763f122d0.centerY ==
UITableViewCellContentView:0x7fa763f12bd0.centerY (active)>",
 "<NSLayoutConstraint:0x60000028d7a0 V:|-(7.33)-[UIStackView:0x7fa763f122d0]
(active, names: '|':UITableViewCellContentView:0x7fa763f12bd0)>",
 "<NSLayoutConstraint:0x60000028d7f0 V:[UIStackView:0x7fa763f122d0]-(7.83)-|
(active, names: '|':UITableViewCellContentView:0x7fa763f12bd0)>"
)

280

The app failed to fulfill all the layout constraints when rendering the stack view of the table
view cell. Let's take a look at the above constraint errors. It mentioned three layout constraints
of the stack view:

1. First, it is the alignment constraint. The stack view is required to center vertically.
2. Secondly, it is the spacing constraint of the top side. Earlier, we defined a constraint such

that the top side of the stack view should be 7.33 points away from the margin of the cell.
3. Lastly, it is the spacing constraint of the bottom side. The bottom side should be 7.83

points away from the margin of the cell.

The system complained that it was impossible to satisfy all the above layout constraints
simultaneously. In other words, it can't center the stack view, and at the same time, keep the
required spacing between the top and bottom sides.

It looks like we have made some mistakes when defining the spacing constraints. If we want to
center the stack view, the value of both spacing constraints should be equal. Let's modify the
value and see if it will fix the issue.

Go to the main.storyboard . In document outline, select the Stack View.top constraint. In the
Attributes inspector, set the constant to 7 . Next, select the Stack View.bottom constraint.
Again, set the constant to 7 .

Figure 15-7. Removing the alignment constraint of the stack view

281

Now run the app again. It should be able to display the address properly without any layout
errors.

Figure 15-8. The app can now display the location field properly

For the home screen, the cells of the table view have not been converted to self sizing cells.
Your exercise is to add the necessary layout constraints (if any) and apply self sizing for the
cells. Your resulting screen will be similar to that shown in figure 15-9.

Exercise

282

Figure 15-9. Self sizing cells in the home screen

Self sizing cells are particularly useful to support Dynamic Type. You may not have heard of
Dynamic Type but you should have seen the setting screen (Settings > General > Accessibility
> Larger Text or Settings > Display & Brightness > Text Size) shown in figure 15-10.

Dynamic Type

283

Figure 15-10. Larger Text Setting

Dynamic Type was first introduced in iOS 7 - it allows users to customise the text size to fit
their own needs. However, only apps that adopt dynamic type respond to the text change. I
believe most of the users are not aware of this feature because only a fraction of third-party
apps have adopted the feature.

Starting from iOS 8 and now iOS 10, Apple encourages developers to adopt Dynamic Type, so
users can choose their own text size.

So how can you adopt Dynamic Type? Once the cell can be self-sized, adopting Dynamic Type
is just a piece of cake. Recalled that we configured the name label in the main screen to use a
text style - Headline in chapter 9, this is what you need to adopt Dynamic Type - use a text
style instead of a fixed font type.

284

Figure 15-11. The name label is configured with a text style

The rest of the labels are still configured to use a fixed system font. Now let's open up the
iPhone simulator and go to Settings > General > Accessibility > Larger Text. Enable Larger
Accessibility Sizes and drag the slider to your right to enlarge the font.

Run the project in the simulator, the name label should be automatically scaled up. For the rest
of the label, their sizes are kept intact because they're using a fixed sized font. In summary, to
adopt Dynamic Type, all you need to do is configure the labels with a text style. That's it.

285

Figure 15-12. Enlarging the font in Settings (left), The name label of the main screen is
enlarged according (right)

In this chapter, I walked you through one of the most useful features in the iOS SDK - self
sizing cells. By combining auto layout, you just need two lines of code to achieve a dynamic cell
layout with variable row height. This definitely makes app development easier to support
different device orientation and dimensions. I have also covered Dynamic Type, which allows
your users to choose their preferred font size. Once you implement self sizing cells, it's very
easy to adopt Dynamic Type. Apple encourages all iOS developers to adopt this technology in
their apps. If you're going to develop your next app, consider to adopt Dynamic Type.

For your reference, you can download the Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinSelfSizingCells.zip.

Summary

286

http://www.appcoda.com/resources/swift3/FoodPinSelfSizingCells.zip

Animation can explain whatever the mind of man can conceive. This facility makes it the
most versatile and explicit means of communication yet devised for quick mass
appreciation.

– Walk Disney

Chapter 16
Basic Animations, Visual Effects and
Unwind Segues

287

In iOS, creating sophisticated animations does not require you to write complex code. All you
need to know is a single method in the UIView class:

UIView.animateWithDuration(1.0, animations)

There are several variations of the method that provide additional configuration and features.
This is the basis of every view animation.

First things first, what's an animation? How is an animation created? Animation is a
simulation of motion and shape change by rapidly displaying a series of static images (or
frames). It is an illusion that an object is moving or changing in size. For instance, a growing
circle animation is actually created by displaying a sequence of frames. It starts with a dot. The
circle in each frame is a bit larger than the one before it. This creates an illusion that the dot
grows bigger and bigger. Figure 16-1 illustrates the sequences of static images. I keep the
example simple so the figure displays 5 frames. To achieve a smooth transition and animation,
you'd need to develop several more frames.

Now that you have a basic idea of how animation works, how will you create an animation in
iOS? Consider our growing circle example. You know the animation starts with a dot (i.e. start
state) and ends with a big red circle (i.e. end state). The challenge is to generate the frames
between these states. You may need to think of an algorithm and write hundreds of lines of
code to generate the series of frames in between. UIView animation helps you compute the
frames between the start and end state resulting in a smooth animation. You simply specify the
start state and tell UIView the end state by calling the UIView.animateWithDuration method.
The rest is handled by iOS. Sounds good, right?

288

There is no better way to understand the technique than by working on a real example. We will
add some basic animations to our FoodPin app. Here is what we're going to do:

Add a check-in button in the detail view
When a user taps the button, it brings up a review view controller, in which the buttons
are animated, for the user to rate the restaurant.

Through building the review view controller, I will show you how to create basic animations
using UIView .

Before creating the animated views, we'll add a rating button to the detail view controller.
First, download this image pack
(http://www.appcoda.com/resources/swift3/FoodPinButtons.zip) and add the icons to
 Assets.xcassets .

Credit: The icons are made by Cosmin Negoita and delivered through
geticonjar.com.

Go to Main.storyboard and drag a Button object from the Object library to the detail view
controller. Place it at the top-right corner of the image view. In the Attributes inspector, set the
title to blank. Change the image option to check and its type to System . Next, scroll down to
set tint to white . By changing the button type to System, you can alter the value of tint to
change the button's color.

Adding a Rating button

289

http://www.appcoda.com/resources/swift3/FoodPinButtons.zip
http://geticonjar.com/freebies/231-micons/
http://geticonjar.com

Figure 16-2. Adding a review button in the detail view

As usual, we need to add some layout constraints for the button. Select the button and click the
Pin button in the layout bar. Refer to figure 16-3 to add four layout constraints (two spacing
constraints for the top & right sides and two constraints to control the width & height of the
button).

290

Figure 16-3. Adding layout constraints for the button

Once done, run the app to have a quick test. Your detail view should look very similar to that in
figure 16-4.

291

Figure 16-4. The check-in button in the detail view

When a user taps the Check-in button, we want to bring up a modal view for the user to give a
rating for the restaurant. In Interface Builder, drag a new view controller from the Object
library to the storyboard. Add an image view to the view and set the image to cafeloisl . Then
select the "Resolve Auto Layout Issues" button in the layout bar and choose Add Missing
Constraints. Xcode automatically adds the layout constraints for you.

Create a View Controller for Restaurant Review

292

Figure 16-5. Adding missing constraints

Quick note: You may wonder why I do not show you this amazing option for
defining layout constraints. First, I want you to understand auto layout
thoroughly, so you know how to define the constraints. Secondly, the "Add
Missing Constraints" option doesn't always work. It mostly works on simple
layouts. But for more complicated ones, you have to handle it on your own.

This image is used as the background image of the view. Later I'll show you how to apply a
blurring effect to the image.

Now, we will design the UI of the review view. The resulting view is displayed in figure 16-6.

293

Figure 16-6. UI design of the review view

First, drag a view object to the image view. In the Size inspector, set X to 53 , Y to 40 , width to
 269 and height to 420 . This view serves as a container view for holding other views and UI
components.

294

Figure 16-7. Adding a view to the view controller

Next, drag an image view from the Object library and put it inside the view you just created.
Change its width and height to 269 and 200 points respectively. Set the image to barrafina
(or other restaurant image).

Then add a label to the view and put it right below the image. Change the text to You've dined
here. What do you think? . Set the font style to Light and size to 27 points. Furthermore,
change the alignment option to center, and set the lines option to 2 . If you've made everything
right, your UI should look similar to figure 16-8.

295

Figure 16-8. Adding an image view and a label to the container view

Next, drag three buttons to the image view and change the title for each of the image:

Set the title of the first button to Absolutely love it! .
Set the title of the second button to Good .
Set the title of the third button to I don't like it .

You can change the background to red and set the tint to white . Set the font style to Light
and size to 16 points. Your buttons should be similar to that in figure 16-9.

Figure 16-9. Rating buttons

296

Again, it's time to define the layout constraints for the UI objects.

First, let's embed the buttons in a stack view, and then define the necessary constraints. Select
the three buttons and click the Stack button in the layout bar to embed them in a vertical stack
view. In the Attributes inspector, change the distribution option to Fill Equally and spacing to
 5 points. The stack view tries its best to fit all the buttons. Meanwhile, it doesn't look good, as
compared to the ones shown in figure 16-6. No worries. It'll get better after we define the
layout constraints for the stack view and the rest of the components.

Let's first start with the view. Select the view, and click the Pin button. Set the spacing of the
top, left and right sides to 20 , 37 and 37 points. We also want to fix the height of the view.
So tick the height checkbox. Then click Add 4 Constraints to add the constraints.

Figure 16-10. Adding layout constraints for the container view

Next, select the image view and click the Pin button. Refer to figure 16-11 to assign the layout
constraints.

297

Figure 16-11. Layout constraints for the image view

Now let's move onto the label. Select it and click the Pin button to add three spacing
constraints. For the left and right sides of the label, they should be 15 points away from the
edge of the view. For the bottom side, it should be 15 points away from the stack view.

298

Figure 16-12. The resulting stack view

Lastly, let's define the required layout constraints for the stack view. Set the spacing value of
the left, right and bottom sides to 8 , 8 , and 10 points respectively. After adding the
constraints, you will see a yellow indicator in the document outline. Click it and follow the
instructions to update the frame position.

299

Figure 16-13. Adding layout constraints for the close button

That's it. You've defined the layout constraints.

To bring up the review view modally, we have to connect the Check-in button with the review
view controller with a segue. Hold the control key and drag from the Check-in button to the
review view controller. Release the buttons and select Present modally as the segue type. Once
the segue is created, select it and set the identifier of the segue to showReview under the
Attribute inspector.

Create a Segue for the Modal View

300

Figure 16-14. Create a segue to present the review view controller modally

Now let's have a quick test. Run the app and go to the detail view. Tapping the review button
should now bring up the review view.

Presently, there is no way to dismiss the view to return to the previous screen (i.e. detail view
controller). What we are going to do is to define a so-called unwind segue. An unwind segue
can be used to navigate back through a modal or push segue. In this example, we can use it to
dismiss the modal view.

Before we create the unwind segue, let's first add a close button. Drag a button from the Object
library to the view. Make sure you put the button inside the container view, and place it at the
top-right corner. In the Attributes inspector, set the button title to blank and image to cross.
Similarly, you will need to a few layout constraints. Click the Pin button and refer to figure 16-
15 to set the constraints accordingly.

Defining an Exit for the Review View Controller

301

Figure 16-15. Adding a close button

Note: If you have any problems designing the UI, download this Xcode project
(http://www.appcoda.com/resources/swift3/FoodPinReviewUI.zip) to take a look.

To use an unwind segue, you need to do two things. First, declare a method in the destination
view controller. In this case, it is the RestaurantDetailViewController class. Add the following
method in RestaurantDetailViewController.swift :

@IBAction func close(segue:UIStoryboardSegue) {

}

Before you can begin adding unwind segues in Interface Builder, you must define at least one
unwind action. This action method tells Xcode that it can be unwound. Optionally, you can
implement additional logic in the method. Meanwhile, an empty method is good enough for us
to configure an unwind segue. Go back to Interface Builder. Press and hold control key and
drag from the Close button to the Exit icon of the scene dock (see figure 16-16). When
prompted, select closeWithSegue: for the action segue.

302

http://www.appcoda.com/resources/swift3/FoodPinReviewUI.zip

Figure 16-16. Adding an unwind segue for the close button

You can run the project again. Now when the user taps the close button, the modal view will be
dismissed.

In iOS 8, Apple introduced a new class called UIVisualEffectView that lets developers apply
visual effects to a view. Combining with the UIBlurEffect class, you can easily apply a blurring
effect to an image view.

Now let's see how we can blur the background image. First, create a new class for the review
view controller. In the project navigator, right click the FoodPin folder and select "New File…".
Select the Cocoa Touch Class template to proceed. Name the class ReviewViewController and
set it as a subclass of UIViewController . Then save the file in the FoodPin folder.

Select the ReviewViewController.swift file you've just created. Because we are going to apply a
blurring effect to the image view, let's add an outlet variable for it:

@IBOutlet var backgroundImageView: UIImageView!

In the viewDidLoad method, add the following code:

let blurEffect = UIBlurEffect(style: UIBlurEffectStyle.dark)
let blurEffectView = UIVisualEffectView(effect: blurEffect)

Applying a Blurring Effect to the Background Image

303

blurEffectView.frame = view.bounds
backgroundImageView.addSubview(blurEffectView)

To apply a blurring effect to the background image view, all you need to do is create a
 UIVisualEffectView object with the blurring effect, followed by adding the visual effect view to
the background image view. The UIBlurEffect class offers three different styles: dark, light,
and extra light. I like the dark style but it is up to you to choose your own style. The above lines
of code are all you need to blur the background image.

Now, go to Interface Builder and select the review view controller. In the Identify inspector, set
the custom class to ReviewViewController . Finally, establish a connection between the
background image view and the backgroundImageView outlet.

Figure 16-17. Establishing a connection between the outlet variable and the image view

You're ready to go. Figure 16-18 displays the resulting screen, depending on your choice of blur
style.

304

Figure 16-18. Light blurring style (left), Dark blurring style (right)

After all the preparation, finally we come to the core part of the chapter: UIView animation.
We're going to add a growing animation for the container view. The growing effect is very
similar to the growing circle animation we talked about earlier. The container view does not
appear when the modal view is first displayed, but the dialog view starts to grow till it reaches
its actual size. Figure 16-19 gives you a better idea of the animation.

Animating Dialog View Using UIView Animation

305

Figure 16-19. Growing animation

As explained before, you just need to provide two states (start and end state) of an animation.
 UIView will then generate the animation for you. For the growing animation, these are the
start and end states:

Start state - the container view is in zero size
End state - the container view is in its regular size

At this point you might be trying to figure out how to resize a view. iOS provides a structure
called CGAffineTransform for you to scale, rotate, and move a view. To scale a view, all you
need to do is create an affine transformation and set it to the transform property of a UIView
object. Here is the line of code for creating a scaling transform that can be used to change a
view to zero size:

CGAffineTransform.init(scaleX: 0, y: 0)

Since we're going to manipulate the container view, the very first thing is to establish the
connection. In the ReviewViewController class, add another outlet variable for the container
view:

@IBOutlet var containerView: UIView!

Go back to Interface Builder and establish the connection between the container view and the
outlet variable.

306

Figure 16-20. Establish a connection between the stack view and the outlet variable

In the viewDidLoad method of the ReviewViewController class, add the following line of code
to set the initial state of the container view:

containerView.transform = CGAffineTransform.init(scaleX: 0, y: 0)

This scales down the container view when it is first loaded. To create the growing effect, we use
the UIView.animate(withDuration:animations:) method to animate the size change. Insert the
following code in ReviewViewController :

override func viewDidAppear(_ animated: Bool) {
 UIView.animate(withDuration: 0.3, animations: {
 self.containerView.transform = CGAffineTransform.identity
 })
}

The duration of the animation is set to 0.3 seconds. In the animations closure, we define the
final state of the dialog view. In this case, we simply scale it to the original size.
 CGAffineTransform.identity is a constant for resetting a view to its original size and position.
Figure 16-21 depicts how this code works.

307

Figure 16-21. How the growing animation works

That's it. UIView automatically renders the animations. Run the app for a quick test and enjoy
the animation.

Quick note: You can change the duration parameter from 0.3 to other value (e.g.
2.0) to slow down or speed up the animation. Alternatively, you can enable slow
animations in the iPhone simulator. Go up to the simulator menu, select Debug >
Slow animations.

The animation is cool, right? Let me introduce a variation of the UIView animation known as
spring animation. Spring animation is very common in iOS 7 or later. One example is the
animation during app launch. To take advantage of spring animation in your app, here is the
single method call you need:

UIView.animate(withDuration: 0.4, delay: 0.0, usingSpringWithDamping: 0.3,
initialSpringVelocity: 0.2, options: .curveEaseInOut, animations: {
 self.containerView.transform = CGAffineTransform.identity

 }, completion: nil)

Spring Animation

308

The method should look familiar to you, but it adds the damping and initialSpringVelocity
parameters. Damping takes a value from 0 to 1, and controls how much resistance the spring
has when it approaches the end state of an animation. If you want to increase oscillation, set to
a lower value. The initialSpringVelocity property specifies the initial spring velocity. Try to
replace the existing animation code with the above code and see how the spring animation
works.

 UIView.animate(withDuration:animations:) is one of the common transforms for scaling a
view. Let's use another affine transform to create a slide-down animation:

CGAffineTransform.init(translationX: 0, y: -1000)

 CGAffineTransform allows you to change the view's position. For a slide-down animation, we
first move the container view off screen and then bring it back to its original position. In the
 viewDidLoad method, replace containerView.transform with the following line of code:

containerView.transform = CGAffineTransform.init(translationX: 0, y: -1000)

The line of code will move the container view off screen (top). The final state is to restore the
container view to the original position. So we can keep the viewDidAppear method intact.

Now run the app again and the slide-up animation should work.

Slide-Down Animation

309

Figure 16-22. Slide-down animation

What's interesting about affine transform is that you can concatenate one transform with
another. This is the function you need to remember:

transform1.concatenating(transform2)

Now that we have implemented the translate transform for the container view. Wouldn't it be
great if we can add a scale transform to it? In the viewDidLoad method, replace the following
code:

containerView.transform = CGAffineTransform.init(translationX: 0, y: -1000)

with:

let scaleTransform = CGAffineTransform.init(scaleX: 0, y: 0)
let translateTransform = CGAffineTransform.init(translationX: 0, y: -1000)
let combineTransform = scaleTransform.concatenating(translateTransform)
containerView.transform = combineTransform

Combining Two Transforms

310

The code is very straightforward. We combine the two transforms by calling the concatenating
function. Again, we can keep the viewDidAppear method unchanged.

That's it! You're ready to go and see how the combined animation works.

Earlier, we used an unwind segue to "go back" to the detail view, when a user taps the close
button. How about the rating buttons? How can we pass the selected rating from the review
view controller to the detail view controller?

We will make use of unwind segues to faciliate the data passing. Here are what we are going to
implement:

We will add another unwind action method in the ReviewViewController class - when any
of the buttons (dislike/good/great) is tapped, the method will be called.
In the method, we determine which button is tapped, and save the corresponding rating.
Then we can update the Been here field of the restaurant detail view to display the rating.

It sounds complicated, but the implementation is quite similar to the one we just implemented
for the close button.

Let's first start with the unwind action method. Declare the following method in the
 RestaurantDetailViewController class:

@IBAction func ratingButtonTapped(segue: UIStoryboardSegue) {

}

Now go to Main.storyboard to connect each of the rating buttons with the unwind action
method. Control-drag from the Absolutely love it! button to the exit icon. Release the button
and select ratingButtonTappedWithSegue: . Once the unwind segue is created, select it in the
document outline. Set its identifer to "great" in the Attributes inspector.

Unwind Segues and Data Passing

311

Figure 16-23. Adding an identifier for the unwind segue

Repeat the same step to connect the other two buttons with the ratingButtonTappedWithSegue:
method. For the Good button, set the unwind segue's identifier to "good". For the "I don't like
it" button, please use "dislike" as the identifier of the unwind segue.

Do you know why we set these identifiers? Each of the rating buttons is connected to the same
unwind action method. We need to have a way to find out which button is tapped. This is the
reason why we set these segue identifiers.

Now go to Restaurant.swift and add a rating property:

var rating = ""

Later we will store the restaurant rating in this property.

Next, go back to RestaurantDetailViewController.swift to implement the unwind action
method. Update the ratingButtonTapped(segue:) method like this:

@IBAction func ratingButtonTapped(segue: UIStoryboardSegue) {
 if let rating = segue.identifier {

 restaurant.isVisited = true

 switch rating {
 case "great": restaurant.rating = "Absolutely love it! Must try."

312

 case "good": restaurant.rating = "Pretty good."
 case "dislike": restaurant.rating = "I don't like it."
 default: break
 }
 }

 tableView.reloadData()
}

The above code is pretty straightforward. We first retrieve the unwind segue's identifier. When
a user rates a restaurant, it means he/she has dined there. So we update the isVisited
property to true . Depending on the segue's identifier (great/good/dislike), we set the rating of
the restaurant accordingly. Finally, we reload the table view to refresh the table.

If you run the app now and rate a restaurant, you will notice that the Been here field is
updated to "Yes, I've been here before."

To make the app even better, let's display the rating in the same field. Change the following
line of code in tableView(_:cellForRowAt:) from:

cell.valueLabel.text = (restaurant.isVisited) ? "Yes, I've been here before" :
"No"

to:

cell.valueLabel.text = (restaurant.isVisited) ? "Yes, I've been here before. \
(restaurant.rating)" : "No"

That's it! You've passed the selected rating from one controller to another. Hit the Run button
to test the app. Choose a restaurant, rate it and the detail view's Been here field should be
updated accordingly.

313

Figure 16-24. Sample rating in the Been here field

This time, I have two exercises for you. The first one is designed to test your knowledge of data
passing. Now that we display a static image in the container view of the review view controller,
would it be great if we can display the image of the selected restaurant? Try to update the
project to make this happen.

Hint: You can add a restaurant property in the ReviewViewController class and
pass the restaurant object from detail view controller by implementing
prepare(for:sender:).

The next exercise is related to animation. Your exercise is to animate the close button in the
Review View Controller. Try to animate each button and create a move-in effect (right to left)
similar to that shown in figure 16-25.

Exercise #1

Exercise #2

314

Figure 16-25. Animating the close button

Hint: You will need to create an outlet for the close button and create a
translate transform for the button.

This is another huge chapter that covers UIView animation, visual effects, and unwind segues.
I hope you love all the techniques you've learned about UIView animations and visual effects.
As you can see, it is super easy to animate a view, whether it's a button or a view. I would
encourage you to play around with the parameters (like damping, initial spring velocity and
delay) and see what animations you can create. And, don't forget to take some time to complete
the exercises.

For your reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinAnimation.zip. For the exercise, you can
download the solution from
http://www.appcoda.com/resources/swift3/FoodPinAnimationExercise.zip.

Summary

315

http://www.appcoda.com/resources/swift3/FoodPinAnimation.zip
http://www.appcoda.com/resources/swift3/FoodPinAnimationExercise.zip

Next up we'll see how to add a map to your app.

316

The longer it takes to develop, the less likely it is to launch.

-Jason Fried, Basecamp

The MapKit framework provides APIs for developers to display maps, navigate through maps,
add annotations for specific locations, add overlays on existing maps, etc. With the framework

Chapter 17
Working with Maps

317

you can embed a fully functional map interface into your app without any coding.

In iOS 9 or later, the MapKit framework allows developers to provide pin customization,
transit and flyover support. We will go over some of these features with you. In particular, you
will learn a few things about the framework:

How to embed a map in a view and table view footer
How to translate an address into coordinates using Geocoder
How to add and customize a pin (i.e. annotation) on map
How to customize an annotation

To give you a better understanding of the MapKit framework, we will add a map feature in the
FoodPin app. After the change, the app will bring up a map when a user taps the address of a
restaurant, and pin its location on the map.

Cool, right? It's gonna be fun. Let's get started.

By default, the MapKit framework is not bundled in the Xcode project. To use it, you have to
first add the framework and bundle it in your project. But you don't need to do it manually.
Xcode has a capability section that lets you configure frameworks for various Apple
technologies such as Maps and iCloud.

In the project navigator, select the FoodPin project and then select the FoodPin target. You can
then enable the Maps feature under the Capabilities section. Just flip the switch to ON, and
Xcode automatically configures your project to use the MapKit framework.

Using MapKit Framework

318

Figure 17-1. Enabling Maps in your Xcode project

What we're going to do is to add a non-interactive map to the footer of the restaurant detail
view. When a user taps the map, the app navigates to a map view controller showing a full
screen map of the restaurant location. Figure 17-2 displays the resulting UI of the app.

Adding a Map Interface to Your App

319

Figure 17-2. An embedded map in the table view footer (left), A full screen map in a view
controller (right)

Now open Main.storyboard and drag a map view from the Object library to the footer of the
table view in the detail view controller. After adding the map, it should appear right below the
prototype cell.

Figure 17-3. Adding a map view to the table view footer

Resize the map view to make it a little bit bigger. You can set its height in the Size inspector to
 135 points.

320

Figure 17-4. Resize the map view

The map view provides various options such as zooming and scrolling for customizing the map
features. In Interface Builder, select the map view and you can edit the options by going to the
Attributes inspector. As we want this map to be non-interactive, uptick the zooming, scrolling,
and rotating checkboxes.

I know you can't wait to test out the change. Let's hit the Run button to have a quick test. When
you select a restaurant to navigate to the detail view, the UI is still the same as before. Where is
the map?

In the earlier chapter, we have written a line of code to clear the table view footer. This is why
the map is not displayed properly. Now go to RestaurantDetailViewController.swift and
delete the following line of code in the viewDidLoad() method:

tableView.tableFooterView = UIView(frame: CGRect.zero)

Once you made this change, the app should display the map in the table footer. Cool, right?
This is the power of MapKit. Without writing a line of code, you already embed a map within
your app, though it just displays a default map.

Before that, however, let's implement the UI of the full screen map.

For the full screen map, we will implement it as a separate view controller. So drag a view
controller from the Object library to the storyboard. Resize the map view to fit the view, and

321

then click "Resolve Auto Layout Issues" > "Add Missing Constraints" to add the required
layout constraints.

Figure 17-5. Defining layout constraints for the map view

To bring up a full screen map when a user taps the non-interactive map in the table footer, we
have to set up a segue between the controllers.

Now hold control key and drag from the Restaurant Detail View Controller to the new map
view controller to create a segue. Select show as the segue type. For the segue we just created,
set the identifier to showMap under the Attribute inspector.

322

Figure 17-6. Creating a segue between the view controllers

You may wonder why we didn't create a segue between the map view (in the table footer) and
the map view controller. Both table view header and footer are not selectable. Therefore, we
can't drag from the map view to the map view controller. In this case, we set up the segue
between the view controllers. Later we will trigger the transition programmatically.

As said, the map in the table footer can't detect touches by default. We have to implement our
own solution to detect the tap. The iOS SDK provides a set of gesture recognizers to detect
common gestures such as taps. We will use a class called UITapGestureRecognizer to handle the
tap gesture.

Now open RestaurantDetailViewController.swift . Recalled that we have configured the
MapKit framework in the project, you have to add an import statement in order to use it. So
first add a line of code at the very beginning to import the MapKit framework:

import MapKit

323

Next, declare an outlet variable for the mapView:

@IBOutlet var mapView: MKMapView!

To use UITapGestureRecognizer for detecting the tap gesture, you will need to initialize an
 UITapGestureRecognizer object and attach it to the map view. Insert the following code in the
 viewDidLoad() method:

let tapGestureRecognizer = UITapGestureRecognizer(target: self, action:
#selector(showMap))
mapView.addGestureRecognizer(tapGestureRecognizer)

During initialization, we tell UITapGestureRecognizer the target method to call, which is
 showMap , when a tap gesture is deteched. We haven't implemented the showMap() method yet.
So add these code to the RestaurantDetailViewController class:

func showMap() {
 performSegue(withIdentifier: "showMap", sender: self)
}

The method is simple. We programmatically trigger the showMap segue by calling
 performSegue with the identifier we configured earlier. Now when a user taps the map view in
the table footer, the showMap() method will be invoked. Consequently, the showMap segue is
triggered.

Lastly, go back to Main.storyboard and establish a connection between the map view (in the
table view footer) and the mapView outlet.

324

Figure 17-7. Connecting the map view outlet

If you compile and run the app, tap the map in the detail view. The app should navigate to a
fully functional map.

Now that you understand how to embed a map in your app, but how can you pin a location on
maps?

To highlight a location on the map, you cannot just use a physical address. The MapKit
framework doesn't work like that. Instead, the map has to know the geographical coordinates
expressed in terms of the latitude and longitude of the corresponding point on the globe.

The framework provides a Geocoder class for developers to convert a textual address, known
as placemark, into global coordinates. This process is usually referred to forward geocoding.
Conversely, you can use Geocoder to convert latitude and longtitude values back to a
placemark. This process is known as reverse geocoding.

To initiate a forward-geocoding request using the CLGeocoder class, all you need do is create
an instance of CLGeocoder , followed by calling the geocodeAddressString method with the

Converting an Address into Coordinates Using Geocoder

325

address parameter. Here is an example:

let geoCoder = CLGeocoder()
geoCoder.geocodeAddressString("524 Ct St, Brooklyn, NY 11231",
completionHandler: { placemarks, error in

// Process the placemark

})

There is no designated format of an address string. The method submits the specified location
data to the geocoding server asynchronously. The server then parses the address and returns
you an array of placemark objects. The number of placemark objects returned greatly depends
on the address you provide. The more specific the address information you have given, the
better the result. If your address is not specific enough, you may end up with multiple
placemark objects.

With the placemark object, which is an instance of CLPlacemark class, you can easily get the
geographical coordinate of the address using the code below:

let coordinate = placemark.location?.coordinate

The completion handler is the code block to be executed after the forward-geocoding request
completes. Operations like annotating the placemark will be done in the code block.

Now that you have a basic idea of Geocoder and understand how to get the global coordinates
of an address, we will look at how you can pin a location on maps. To do that, the MapKit
framework provides an annotation feature for you to pinpoint a specific location.

A Quick Overview of Map Annotations

326

Figure 17-8. An annotation

An annotation can appear in many forms. The pin annotation that you usually see in a Maps
app is an example of annotations. Typically an annotation consists of an image (e.g. pin) and a
callout bubble that displays additional information about the location.

From a developer's point of view, an annotation actually consists of two different objects:

an annotation object - which stores the data of an annotation such as the name of the
placemark. The object should conform to the MKAnnotation protocol as defined in the Map
Kit.
an annotation view - which is the actual object for the visual representation of the
annotation. The pin image is an example. If you want to display the annotation in your
own form (say, use pencil instead of pin), you'll need to create to your own annotation
view.

The MapKit framework comes with a standard annotation object and an annotation view. So
you do not need to create your own, unless you want to customize the annotation.

In simplest form, a standard annotation appears as a pin without images and callout bubbles.
To add a pin on a map, you just need a few lines of code:

let annotation = MKPointAnnotation()
if let location = placemark.location {
 annotation.coordinate = location.coordinate
 mapView.addAnnotation(annotation)

327

}

The MKPointAnnotation class is standard class, which adopts the MKAnnotation protocol. By
specifying the coordinates in the annotation object, you can call the addAnnotation method of
the mapView object to put a pin on the map.

After introducing you the basics of annotations and geocoding, let's get back to the FoodPin
project. We first add a pin annotation to the non-interactive map in the table footer.

In RestaurantDetailViewController.swift , insert the following code in the viewDidLoad()
method:

let geoCoder = CLGeocoder()
geoCoder.geocodeAddressString(restaurant.location, completionHandler: {
placemarks, error in
 if error != nil {
 print(error)
 return
 }

 if let placemarks = placemarks {
 // Get the first placemark
 let placemark = placemarks[0]

 // Add annotation
 let annotation = MKPointAnnotation()

 if let location = placemark.location {
 // Display the annotation
 annotation.coordinate = location.coordinate
 self.mapView.addAnnotation(annotation)

 // Set the zoom level
 let region =
MKCoordinateRegionMakeWithDistance(annotation.coordinate, 250, 250)
 self.mapView.setRegion(region, animated: false)
 }
 }

})

I'll not go into the above code line by line as we've discussed the usage of Geocoder and

Adding an Annotation to the Non-interactive Map

328

annotation earlier. In brief, we first convert the address of the selected restaurant (i.e.
 restaurant.location) into coordinates using Geocoder . In most cases, the placemarks array
should contain a single entry. So we just pick the first element from the array, followed by
displaying the annotation on the map view.

The last two lines of code are new to you. Here we use the MKCoordinateRegionMakeWithDistance
function to adjust the initial zoom level of the map to 250m radius.

Note: You can still display a pin without these two lines of code. Try to
remove these lines of code and see how the map differs.

If you run the app now, it should correctly display the restaurant location on the map.

Figure 17-9. Pin the restaurant location on a map

Adding an Annotation to the Full Screen Map

329

Okay, let's move onto the implementation of the full screen map.

As usual, we first create a custom class for the map view controller. In the project navigator,
right click the FoodPin folder and select "New File...". Create the new class using the Cocoa
Touch class template and name the class MapViewController . Make sure you set it as a
subclass of UIViewController , and save the file.

Again we first import the MapKit framework. Insert the following line of code at the very
beginning of the MapViewController.swift file:

import MapKit

Next, declare the following outlet variable for the map view and another variable for the
selected restaurant:

@IBOutlet var mapView: MKMapView!

var restaurant:Restaurant!

The outlet variable is used for establishing a connection with the map view in the storyboard.
Go to Interface Builder and select the map view controller. Under the Identity inspector, set
the custom class to MapViewController . Then establish a connection between the outlet
variable and the map view.

330

Figure 17-10. Establish a connection between MKMapView and the outlet variable

To add an annotation on map, update the viewDidLoad method to the following code:

override func viewDidLoad() {
 super.viewDidLoad()

 // Convert address to coordinate and annotate it on map
 let geoCoder = CLGeocoder()
 geoCoder.geocodeAddressString(restaurant.location, completionHandler: {
placemarks, error in
 if error != nil {
 print(error)
 return
 }

 if let placemarks = placemarks {
 // Get the first placemark
 let placemark = placemarks[0]

 // Add annotation
 let annotation = MKPointAnnotation()
 annotation.title = self.restaurant.name
 annotation.subtitle = self.restaurant.type

331

 if let location = placemark.location {
 annotation.coordinate = location.coordinate

 // Display the annotation
 self.mapView.showAnnotations([annotation], animated: true)
 self.mapView.selectAnnotation(annotation, animated: true)
 }
 }

 })

}

The above code is very similar to the one we have just discussed, so I'll not go into the above
code line by line. We convert the address into a coordinate for annotation. Once again, we use
 MKPointAnnotation to add a pin to the map. But this time we assign it with a title and a
subtitle, and use the showAnnotations method of the mapView object to put a pin on the map.
The method is smart enough to determine the best fit region for the annotation. By default, the
callout bubble is not shown on the map until the user taps the pin. Here we also invoke the
 selectAnnotation method to display the callout bubble.

There is still one thing left before testing the app. We haven't passed the selected restaurant to
the map view controller. In the RestaurantDetailViewController class, update the
 prepare(for:sender:) method like this:

override func prepare(for segue: UIStoryboardSegue, sender: AnyObject?) {
 if segue.identifier == "showReview" {
 let destinationController = segue.destination as! ReviewViewController
 destinationController.restaurant = restaurant

 } else if segue.identifier == "showMap" {
 let destinationController = segue.destination as! MapViewController
 destinationController.restaurant = restaurant
 }
}

We simply get the selected restaurant and pass it to the destination view controller. In this
case, it's the MapViewController class. Okay, let's compile and run the app. Tap the Map button
in the detail view and you'll see a pin on the map.

332

Figure 17-11. Tapping the map button now shows a map with the restaurant's location

Wouldn't it be great if we can show the restaurant thumbnail in the callout bubble?

As mentioned in the beginning of this chapter, an annotation view controls the visual part of
an annotation. In order to add a thumbnail or image in the annotation, you have to modify the
annotation view. To do that, you have to adopt the MKMapViewDelegate protocol, which defines
a set of optional methods that you can use to receive map-related update messages. The map
view uses one of these methods to request annotation. Every time when the map view needs an
annotation view, it calls the mapView(_:viewFor:) method:

optional func mapView(_ mapView: MKMapView, viewFor annotation: MKAnnotation) -
> MKAnnotationView?

So far we haven't adopted the protocol and provide our own implementation for the method.

Adding an Image to the Annotation View

333

This is why a default annotation view is displayed. We're going to implement the method and
create our own annotation view to embed the restaurant image.

Go back to the MapViewController.swift file and adopt the MKMapViewDelegate protocol:

class MapViewController: UIViewController, MKMapViewDelegate

In the viewDidLoad method, add the following line of code to define the delegate of mapView:

mapView.delegate = self

Quick note: Here we define MapViewController as the delegate object of mapView.
The delegation pattern is among the most common patterns in iOS development. By
now, I assume you have a good understanding of the delegate pattern. If not,
read chapter 7 again.

Next implement the mapView(_:viewForAnnotation:) method using the following code:

func mapView(_ mapView: MKMapView, viewFor annotation: MKAnnotation) ->
MKAnnotationView? {
 let identifier = "MyPin"

 if annotation.isKind(of: MKUserLocation.self) {
 return nil
 }

 // Reuse the annotation if possible
 var annotationView:MKPinAnnotationView? =
mapView.dequeueReusableAnnotationView(withIdentifier: identifier) as?
MKPinAnnotationView

 if annotationView == nil {
 annotationView = MKPinAnnotationView(annotation: annotation,
reuseIdentifier: identifier)
 annotationView?.canShowCallout = true
 }

 let leftIconView = UIImageView(frame: CGRect.init(x: 0, y: 0, width: 53,
height: 53))
 leftIconView.image = UIImage(named: restaurant.image)
 annotationView?.leftCalloutAccessoryView = leftIconView

 return annotationView
}

334

Let's go through the above code line by line.

Other than placemark, the user's current location is also a kind of annotation. The map view
will also call this method when annotating the user's location. As you may know, the current
location is displayed as a blue dot in maps. Even though we haven't enabled the app to display
the current location, we don't want to change its annotation view. At the very beginning of the
code, we verify if the annotation object is a kind of MKUserLocation . If yes, we simply return
 nil and the map view will keep displaying the location using a blue dot.

For performance reasons, it is preferred to reuse an existing annotation view instead of
creating a new one. The map view is intelligent enough to cache unused annotation views that
it isn't using. Similar to UITableView , we can call up the
 dequeueReusableAnnotationView(withIdentifier:) method to see if any unused views are
available. We then downcast it to MKPinAnnotationView .

If there are no unused views available, we create a new one by instantiating a
 MKPinAnnotationView object with the canShowCallout property set to true . We still use the
standard pin as the annotation view. But we add a thumbnail of the selected restaurant to
 leftCalloutAccessoryView , which is a view shown on the left side of the callout bubble.

Cool! We're done. Press the Run button and launch the app. Pick a restaurant and tap the Map
button. You should see a thumbnail in the callout bubble.

335

Figure 17-12. An annotation with a thumbnail

In iOS 9 or later, you can customize the color of the pin to any color you want. Apple
introduces a new property called pinTintColor for MKPinAnnotationView . To change the pin
color, all you need to do is assign the pinTintColor property with a UIColor object.

annotationView?.pinTintColor = UIColor.orange

Starting from iOS 9, Apple also lets developers control what goes on the map view. Here are
the three new properties for you to control the content of a map view:

showTraffic - shows any high traffic on your map view
showScale - shows a scale on the top-left corner of your map view
showCompass - displays a compass control on the top-right corner of your map view

Customizing the Pin Color

Map Customizations

336

Figure 17-13. Show traffic, scale and compass in the map

As a demo, you can insert the following lines of code in the viewDidLoad method to give it a
try:

mapView.showsCompass = true
mapView.showsScale = true
mapView.showsTraffic = true

In this chapter, I've walked you through the basics of the MapKit framework. By now, you
should know how to embed a map in your app and add an annotation. But this is just a
beginning. There is a lot more you can do from here. One thing you can do is further explore
MKDirection . It provides you with route-based directions data from Apple servers to get
travel-time information or driving or walking directions. You can take the app further by

Summary

337

https://developer.apple.com/library/mac/documentation/MapKit/Reference/MKDirections_class/

showing directions.

For your reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinMaps.zip.

338

http://www.appcoda.com/resources/swift3/FoodPinMaps.zip

My biggest motivation? Just to keep challenging myself. I see life almost like one long
University education that I never had. Everyday I'm learning something new.

- Richard Branson

Chapter 18
Introduction to Static Table Views,
UIImagePickerController and
NSLayoutConstraint

339

Up till now, the FoodPin app is only capable of displaying content. We need to find a way for
users to add a new restaurant. In this chapter, we will create a new screen that displays an
input form for collecting restaurant information. In the form, it will let users pick a restaurant
photo from the built-in photo library. You'll learn a number of stuff:

How to create a form using a static table view
How to use UIImagePickerController to select photo from the built-in photo library and
take photos
How to define auto layout constraints programmatically using NSLayoutConstraint

In the first few chapters of the book, we have gone through the basics of table views. The table
views that I covered are dynamic in nature. Usually you create a prototype cell and populate it
with dynamic content. However, table views are not limited to present dynamic content.
Sometimes, you may just want to use a table view to present a form or a setting screen. In this
case, a static table view is what you need. Static table views are ideal for situations where there
are a pre-defined number of data items to be displayed.

Xcode allows developers to create static table views with minimal code. To illustrate how easy
you can use storyboard to implement a static table view, we will build a new screen for adding
a new restaurant.

Let's get started.

Go to Main.storyboard and drag a table view controller from the Object library to the
storyboard. Select the table view in the document outline. In the Attribute inspector, change
the Content option from Dynamic Prototypes to Static Cells . Once changed, you will have a
table view with three empty static cells.

Adding a New Table View Controller

340

Figure 18-1. A static table view

For our input form, we need a total of 5 table view cells:

Cell #1 - an image view for displaying the restaurant image
Cell #2 - a Name label and a text field
Cell #3 - a Type label and a text field
Cell #4 - a Location label and a text field
Cell #5 - a Have You Been Here label and two buttons for Yes/No

You can easily increase the number of cells by selecting the Table View Section in the
document outline. In the Attribute inspector, you can change the Rows option from 3 to 5 .

341

Figure 18-2. Changing the number of rows from 3 to 5

Now we'll layout each of the table view cells. First, download this image pack
(http://www.appcoda.com/resources/swift3/photoicons.zip) and unzip it. Add the images to
 Assets.xcassets .

Credit: Icons made by Freepik from www.flaticon.com and is licensed by CC BY
3.0

For the first cell, change its height to 250 (or whatever value you prefer), and change the
background color to light gray. Also set the Selection option to None.

Then drag an image view from the Object library to it. In the Attribute inspector, set the image
to photoalbum . Resize the image to 64x64 points and place it right at the center of the cell.
Click Resolve Auto Layout Issues > Add missing constraints to add the required layout
constraints.

Figure 18-3. Add an image view to the first cell

342

http://www.appcoda.com/resources/swift3/photoicons.zip
http://www.flaticon.com/authors/freepik
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

For the second cell, change its height to 72 . Drag a label to the cell and change its title to
 NAME . Then, drag a text field to the cell and put it under the name label. The text field is a
control for capturing user input and displaying editable text. Typically you use it to gather
small amounts of text from users. In the Attribute inspector, set the placeholder value to
 Restaurant Name and set the border style to None . A placeholder is displayed when there is no
other text in the text field. Set the width of the text field to 339 points. Figure 18-4 shows the
sample design of the cell. You are not required to follow the design strictly and free to
implement your own.

Figure 18-4. The cell layout for capturing user's input

Again, you need to define the layout constraints. Select both the Name label and the text field.
In the layout bar, click Resolve Auto Layout Issues > Add missing constraints to add the
required layout constraints.

For the third and fourth cells, repeat the same procedures, but set the label to TYPE and
LOCATION respectively.

For the fifth cell, set its height to 72 points. Then drag a label to the cell and name it Have You
Been Here. Then add two buttons to the cell. Name one button YES and the other one NO. For
the YES button, change its background color to red , and set the background color of the NO
button to gray . Also, set the text color to white for both buttons. Again, select the labels and
the buttons, followed by adding the missing constraints. Below shows a sample design of the
field.

343

Figure 18-5. Sample cell design

To finish the layout of the screen, embed the table view controller in a navigation controller.
Go up to the Xcode menu, and select the table view controller and select Editor > Embed in >
Navigation Controller. Set the title of navigation bar to New Restaurant .

Without writing a single line of code, you create a form by using a static table view. You're not
limited to create forms with static table views. You can apply the same technique to create
screens like Settings.

Note: If you find it hard to create the UI design, you can download the starter
project from
[http://www.appcoda.com/resources/swift3/FoodPinStaticTableStarter.zip]
(http://www.appcoda.com/resources/swift3/FoodPinStaticTableStarter.zip) for
reference.

So far we just created a standalone table view controller. We expect to bring up this controller
when a user taps a + button in the top-right corner of the main view. Obviously, we need to
connect the button with the "New Restaurant" controller using a segue. In the Interface

Adding a Segue

344

Builder editor, first drag a bar button item from the Object library to the navigation bar of the
Food Pin controller. In the Attribute inspector, change the identifier to Add , and you'll see a +
icon.

Note: A bar button (UIBarButtonItem) is very similar to a standard button
(UIButton). However, a bar button is specifically designed for navigation bars
and toolbars.

Figure 18-6. Add a bar button item in the navigation bar of the main screen

Next, hold the control key, and drag from the + icon to the navigation controller that embeds
the New Restaurant view controller. Release the buttons and select present modally for the
segue type. Set the identifier of the segue to addRestaurant in the Attribute inspector.

Quick tip: You can right-click any empty area on the storyboard, and select the
zoom out option to have an overview of the storyboard.

345

Figure 18-7. Adding a segue for the + icon

Similar to the modal view controller we built before, we need to provide a way for users to
dismiss it. In the navigation bar of the New Restaurant view controller, add a bar button item
to the top-left corner. In the Attribute inspector, set its identifier to Cancel and tint to white .

When a user taps the Cancel button, the modal view will be dismissed. In order to do that, we'll
define an unwind segue. Select the RestaurantTableViewController.swift file and define the
following unwind action:

@IBAction func unwindToHomeScreen(segue:UIStoryboardSegue) {

}

Once you add this method, Interface Builder can recognize the unwind action. Now, go back to
 Main.storyboard . Hold control key and drag from the Cancel button to the Exit icon of the
scene dock (see figure 18-8). In the popover menu, select the unwindToHomeScreenWithSegue:
option for the action segue.

346

Figure 18-8. Adding an unwind segue for the Cancel button

Now let's have a quick test. Compile and run the project. After launching the app, tap the +
icon. You should see the New Restaurant screen.

When the first table view cell (i.e. the one with camera) is tapped, we want to bring up the
built-in photo library and let users choose a photo. The UIKit framework provides a convenient
API called UIImagePickerController for loading photos from the photo library. What's great is
that the same API can be used to bring up a camera interface for taking a picture.

The simulator doesn't support the camera feature. If you want to test an app that utilizes the
built-in camera, you'll need a real iOS device.

Note: Starting from Xcode 7, you no longer need to enroll into the Apple
Developer Program before you can test your app on a real iOS device. I will
show you how to deploy an app to the device for testing in chapter 25.

To keep things simple, we will only use UIImagePickerController for choosing saved images.
First, create a new class named AddRestaurantController and set it as a subclass of
 UITableViewController . In the storyboard, select the Add Restaurant controller and set its
custom class to AddRestaurantController in the Identity inspector.

In the AddRestaurantController.swift file, remove the following generated methods because
we do not need them for the static table view:

override func numberOfSections(in tableView: UITableView) -> Int {
 // #warning Incomplete implementation, return the number of sections

Displaying the Photo Library Using
UIImagePickerController

347

 return 0
}

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 // #warning Incomplete implementation, return the number of rows
 return 0
}

Next, add the following method to detect the touch and load the photo library:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 if indexPath.row == 0 {
 if UIImagePickerController.isSourceTypeAvailable(.photoLibrary) {
 let imagePicker = UIImagePickerController()
 imagePicker.allowsEditing = false
 imagePicker.sourceType = .photoLibrary

 present(imagePicker, animated: true, completion: nil)
 }
 }
}

As we've discussed before, the tableView(_:didSelectRowAt:) method is called when a cell is
selected. In this case, we only want to bring up the photo library when the first cell is selected.
Therefore, we have a conditional check at the very beginning. To load up the photo library, all
you need to do is create an instance of UIImagePickerController and set its sourceType to
 .photoLibary . You then call up the present(_:animated:completion:) method to bring up the
photo library.

That's it. Easy, right? Sometimes, the user may not allow you to access the photo library. As a
good practice, you should always use the class method isSourceTypeAvailable to verify if a
particular media source is available.

If you compile and run the app, you'll end up with an error when tapping the photo cell like
this:

[access] This app has crashed because it attempted to access privacy-sensitive
data without a usage description. The app's Info.plist must contain an
NSPhotoLibraryUsageDescription key with a string value explaining to the user
how the app uses this data.

348

In iOS 10 or later, for privacy reasons, you have to explicitly describe the reason your app
accesses the user's photo library. If you fail to do so, you will see the above error.

To fix that, you need to add a key (NSPhotoLibraryUsageDescription) in the Info.plist file
and provide your reason.

Now select Info.plist in the project navigator. Right click any blank area in the editor and
select Add Row. Choose "Privacy - Photo Library Usage Description" for the key and set the
value to:

You need to grant the app access to your photo library so you can pick your favorite
restaurant photo.

Figure 18-9. Add a key to specify the reason your app accesses the photo library

Now compile and run the app. Tapping the photo cell should bring up the built-in photo
library. When prompted, remember to tap OK to enable your app to access the photo library.
The simulator already comes with several sample photos. If you want to add your own photos,
drag them from Finder to the simulator. This will automatically add the photos to the Photos
app of the simulator.

349

Figure 18-10. Loading the built-in photo library in FoodPin app

If you want to allow the user to take a photo instead of choosing a saved
image. simply set the sourceType to .camera. In this case,
UIImagePickerController will show up a camera interface for taking picture.

If you select a photo from the photo library, it wouldn't show up in the image view. How do you
know which photo the user selects? To interact with the image picker interface, the
 AddRestaurantController class has to adopt two delegates: UIImagePickerControllerDelegate
and UINavigationControllerDelegate .

class AddTableViewController: UITableViewController,
UIImagePickerControllerDelegate, UINavigationControllerDelegate

What if you want to let your user take picture?

Adopting the UIImagePickerControllerDelegate Protocol

350

When a user chooses a photo from the photo library, the
 imagePickerController(_:didFinishPickingMediaWithInfo:) method of the delegate is called.

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : Any]) {

}

By implementing the method, we can get the selected photo from the method's parameter.
Before implementing the method, let's declare an outlet variable for the image view. Later we
can set the image view with the chosen image.

@IBOutlet var photoImageView: UIImageView!

Go to the Interface Builder and connect the image view of the cell with the photoImageView
outlet variable.

Next, implement the delegate method as follows:

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : Any]) {

 if let selectedImage = info[UIImagePickerControllerOriginalImage] as?
UIImage {
 photoImageView.image = selectedImage
 photoImageView.contentMode = .scaleAspectFill
 photoImageView.clipsToBounds = true
 }

 dismiss(animated: true, completion: nil)
}

When the method is called, the system passes you an info dictionary object that contains the
selected image. UIImagePickerControllerOriginalImage is the key of the image selected by the
user.

The above code assigns the image view with the selected image. We also change the content
mode so that the image is displayed in aspect fill mode. Lastly, we call the dismiss method to
dismiss the image picker.

Don't forget to add this line of code in the tableView(_:didSelectRowAt:) method, immediately

351

after the declaration of imagePicker :

imagePicker.delegate = self

Now you're ready to test the app. Try to select a photo from the album and it should be
displayed right in the image view.

Figure 18-11. Displaying the selected image in the image view

Unfortunately, the image was not perfectly displayed. It is because some layout constraints are
missing. Let's first revisit the layout constraints of the image view. If you go to
 Main.storyboard and take a look at the image view, we have just defined two constraints to
center the image in both vertical and horizontal directions.

Defining Auto Layout Constraints Programatically

352

Figure 18-12. Layout constraints for the image view

When the app loads the selected image from the photo library, it tries to satisfy the constraints
and center the image in the cell. But if the image is larger than the viewable area of the image
view, it will not be fully displayed, just like the one shown in figure 18-11.

To fix the issues, we have to add a few layout constraints so that the image is bound within the
viewable area. Instead of defining the layout constraints visually through the Interface Builder
editor, you can add the constraints by using an API called NSLayoutConstraint . This time let us
see how to create them programmatically.

Figure 18-13. Sample spacing constraints for the map view

353

Figure 18-13 shows a sample layout constraint that we have created before using Interface
Builder. The same constraint can be written using NSLayoutConstraint like this:

let leadingConstraint = NSLayoutConstraint(item: mapView, attribute:
NSLayoutAttribute.leading, relatedBy: NSLayoutRelation.equal, toItem:
mapView.superview, attribute: NSLayoutAttribute.leading, multiplier: 1,
constant: 0)
leadingConstraint.isActive = true

A layout constraint actually defines a relationship between two user interface objects. If you
compare the constraint's properties defined in the Attribute inspector with those defined in the
code, you should reveal their relationship. The item parameter corresponds to First item,
 attribute corresponds to the item after the dot in First item, relatedBy corresponds to
Relation, toItem corresponds to Second Item, attribute corresponds to the item after the
dot in Second item, multiplier corresponds to Multiplier , and constant corresponds to
 Constant .

By default, the constraint is not activated after instantiation. You have to set its isActive
property to true in order to activate it.

Now back to the image view, we have to add four layout constraints for the top, bottom,
leading (i.e. left), and trailing (i.e. right) sides of the image view. Update the delegate method
with the following code:

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) {

 if let selectedImage = info[UIImagePickerControllerOriginalImage] as?
UIImage {
 photoImageView.image = selectedImage
 photoImageView.contentMode = .scaleAspectFill
 photoImageView.clipsToBounds = true
 }

 let leadingConstraint = NSLayoutConstraint(item: photoImageView, attribute:
NSLayoutAttribute.leading, relatedBy: NSLayoutRelation.equal, toItem:
photoImageView.superview, attribute: NSLayoutAttribute.leading, multiplier: 1,
constant: 0)
 leadingConstraint.isActive = true

 let trailingConstraint = NSLayoutConstraint(item: photoImageView,

354

attribute: NSLayoutAttribute.trailing, relatedBy: NSLayoutRelation.equal,
toItem: photoImageView.superview, attribute: NSLayoutAttribute.trailing,
multiplier: 1, constant: 0)
 trailingConstraint.isActive = true

 let topConstraint = NSLayoutConstraint(item: photoImageView, attribute:
NSLayoutAttribute.top, relatedBy: NSLayoutRelation.equal, toItem:
photoImageView.superview, attribute: NSLayoutAttribute.top, multiplier: 1,
constant: 0)
 topConstraint.isActive = true

 let bottomConstraint = NSLayoutConstraint(item: photoImageView, attribute:
NSLayoutAttribute.bottom, relatedBy: NSLayoutRelation.equal, toItem:
photoImageView.superview, attribute: NSLayoutAttribute.bottom, multiplier: 1,
constant: 0)
 bottomConstraint.isActive = true

 dismiss(animated: true, completion: nil)
}

Here we programmatically define and activates four layout constraints for the image view so
that the image is bound within the cell. Now let's run the app again. The app should now be
able to display the selected image properly.

355

Figure 18-14. The image is now scaled and displayed perfectly

So far, we only handle the image cell of the input form. Your exercise is to add a Save button in
the top-right corner of the navigation bar. When the user taps the button, you get the values of
the text fields, validate them and print them out to the console.

Your Exercise

356

Figure 18-15. Sample alert for the form validation

On top of that, you need to handle the selection of Yes/No button in the Have You Been Here
field. When the user selects No, the background color of the No button will be changed to red.
Conversely, the background color of the Yes button will be changed to gray.

This exercise is more challenging than the earlier ones, so I will give you five hints. The first
hint is that you will need to declare the following outlet variables in the AddRestaurant class
and connect each of them with the corresponding UI component:

@IBOutlet var nameTextField:UITextField!

357

@IBOutlet var typeTextField:UITextField!
@IBOutlet var locationTextField:UITextField!
@IBOutlet var yesButton:UIButton!
@IBOutlet var noButton:UIButton!

The next hint is that you will need to refer to the documentation of UITextField
(https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITextField_Clas
s/). By reading the API document, you will find out which attribute is used for storing the text
of the text field.

Thirdly, you have to declare a save action method in the AddRestaurant class. When the Save
button is tapped, this action method will be called. So you will have to connect the button with
the action method in Interface Builder. In the method, you will write code to perform a couple
of things:

1. Form validation - check if the input text is blank. Otherwise, use UIAlertController to
present an alert prompt.

2. Print out the form values to console. Here is a sample output:

Name: Optional("For Kee Restaurant")
Type: Optional("Hong Kong Style")
Location: Optional("Hong Kong")
Have you been here: true

Next, you can set an identifier for the unwind segue and execute it programmatically. This
allows you to dismiss the Add Restaurant view controller and return to the home screen.

performSegue(withIdentifier: "unwindToHomeScreen", sender: self)

Alternatively, you can also invoke the following method to dismiss the controller:

dismiss(animated: true, completion: nil)

You will have to create another action method to toggle the color of the YES and NO buttons.
As the last hint, here is the skeleton of the action method:

@IBAction func toggleBeenHereButton(sender: UIButton) {
 // Yes button clicked
 if sender == yesButton {
 isVisited = true

358

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITextField_Class/

 // Change the backgroundColor property of yesButton to red
 // Change the backgroundColor property of noButton to gray
 } else if sender == noButton {
 isVisited = false
 // Change the backgroundColor property of yesButton to gray
 // Change the backgroundColor property of noButton to red
 }
}

I have included the solution for you. You can find the download link at the end of the chapter.
However, I highly recommend you to work on the exercise. It's gonna be fun to figure out your
own implementation.

In this chapter, we demonstrate how to create a static table view using Interface Builder. While
you can use a table view to display dynamic data from data source, a static table view provides
a great way to display a finite quantity of data that is already known beforehand. You also
learned how to access the built-in photo library. UIImagePickerController makes it so simple
for developer to access the built-in camera and photo library.

Furthermore, we walked through NSLayoutConstraint together. You should now have some
ideas about how to create layout constraints programmatically. You commonly use Interface
Builder to define the layout constraints. That's good enough for most layouts. However, when
you need to build a dynamic UI that changes within the application, you will need to modify
the layout constraints at runtime. I only give you a brief introduction to NSLayoutConstraint .
You can refer to the official documentation
(https://developer.apple.com/library/ios/documentation/AppKit/Reference/NSLayoutConstr
aint_Class/) for details.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinStaticTableView.zip. For the solution to
the exercise, you can download it from
http://www.appcoda.com/resources/swift3/FoodPinStaticTableViewExercise.zip.

Next up, we will talk about Core Data and see how to save the restaurant data in database.

Summary

359

https://developer.apple.com/library/ios/documentation/AppKit/Reference/NSLayoutConstraint_Class/
http://www.appcoda.com/resources/swift3/FoodPinStaticTableView.zip
http://www.appcoda.com/resources/swift3/FoodPinStaticTableViewExercise.zip

Learn not to add too many features right away, and get the core idea built and tested.

– Leah Culver

Congratulations on making it this far! By now you've already built a simple app for users to list
their favorite restaurants. If you've worked on the previous exercise, you should understand
the fundamentals of how to add a restaurant; I've tried to keep things simple and focus on the
basics of UITableView. Up to this point, all restaurants have been predefined in the source

Chapter 19
Working with Core Data

360

code and stored in an array. If you want to save a restaurant, the simplest way is to add a new
restaurant to the existing restaurants array.

However, if you do it this way, you can't save the new restaurant permanently. Data holding in
memory (e.g. array) is volatile. Once you quit the app, all the changes are gone. We need to
find a way to save the data in a persistent manner.

To save the data permanently, we'll need to save in a persistent storage-like file or database. By
saving the data to a database, for example, the data will be safe even if the app quits or crashes.
Files are another way to save data, but they are more suitable for storing small amounts of data
that do not require frequent changes. For instance, files are commonly used for storing
application settings. If you open the Support Files folder in project navigator, you'll find the
Info.plist file. This property file is used for storing your project settings.

The FoodPin app may need to store thousands of restaurant records. Users may also add or
remove the restaurant records quite frequently. In this case, a database is a suitable way to
handle a large set of data. In this chapter, I will walk you through the Core Data framework
and show you how to use it to manage data in database. You will make a lot of changes to your
existing FoodPin project, but after going through this chapter your app will allow users to save
their favorite restaurants persistently.

If you haven't done the previous exercise, you can download this project's templates
(http://www.appcoda.com/resources/swift3/FoodPinStaticTableViewExercise.zip) to start
with.

When we talk about persistent data, you probably think of databases. If you are familiar with
Oracle or MySQL, you know that a relational database stores data in the form of tables, rows
and columns; your app talks to the database by using an SQL (Structured Query Language)
query. However, don't mix up Core Data with databases. Though SQLite database is the default
persistent store for Core Data on iOS, Core Data is not exactly a relational database - it is
actually a framework that lets developers interact with database (or other persistent storage) in
an object-oriented way.

What is Core Data?

361

http://www.appcoda.com/resources/swift3/FoodPinStaticTableViewExercise.zip

Take the FoodPin app as an example. If you want to save the data to database, you are
responsible for writing the code to connect to the database and retrieve or update the data
using SQL. This would be a burden for developers, especially for those who do not know SQL.

Core Data provides a simpler way to save data to a persistent store of your choice. You can map
the objects in your apps to the table in the database. Simply put it allows you to manage
records (select/insert/update/delete) in the database without even knowing any SQL.

Before we start working on the project, you need to first have a basic understanding of the Core
Data Stack (see figure 19-1):

Managed Object Context – Think of it as a scratch pad or temporary memory area
containing objects that interact with data in persistent store. Its job is to manage objects
created and returned using Core Data framework. Among the components in the Core
Data stack, the managed object context is the one you'll work directly with most of the
time. In general, whenever you need to fetch and save objects in the persistent store, the
context is the first component you'll interact with.
Persistent Store Coordinator – SQLite is the default persistent store in iOS. However,
Core Data allows developers to set up multiple stores containing different entities. The
persistent store coordinator is the party responsible for managing different persistent
object stores and saving the objects to the stores. Forget about it if you don't understand
what it is; you won't interact with the persistent store coordinator directly when using
Core Data.
Managed Object Model – This describes the schema that you use in the app. If you
have some background in databases, think of this as the database schema. However, the
schema is represented by a collection of objects (also known as entities). For example, a
collection of model objects can be used to represent the collection of restaurants in the
FoodPin app. In Xcode, the managed object model is defined in a file with the extension
 .xcdatamodeld . You can use the visual editor to define the entities and their attributes and
relationships.
Persistent Store - This is the repository in which your data is actually stored. Usually it's
a database, and SQLite is the default database. But it can also be a binary or XML file.

Core Data Stack

362

That looks complicated, right? Definitely. Therefore, iOS 10 introduces a new class called
 NSPersistentContainer to simplify the management of Core Data stack in your apps.
 NSPersistentContainer is the class you will deal with for saving and retrieving data.

Feeling confused? No worries. You will understand what I mean as we convert the FoodPin
app from arrays to Core Data.

The simplest way to use Core Data is to enable the Core Data option during project creation.
Xcode will generate the required code in AppDelegate.swift and create the data model file for
Core Data.

Using Core Data Template

363

If you create a CoreDataDemo project with Core Data option enabled, you will see the
following variables and method generated in the AppDelegate class:

// MARK: - Core Data stack

lazy var persistentContainer: NSPersistentContainer = {
 /*
 The persistent container for the application. This implementation
 creates and returns a container, having loaded the store for the
 application to it. This property is optional since there are legitimate
 error conditions that could cause the creation of the store to fail.
 */
 let container = NSPersistentContainer(name: "CoreDataDemo")
 container.loadPersistentStores(completionHandler: { (storeDescription,
error) in
 if let error = error as NSError? {
 // Replace this implementation with code to handle the error
appropriately.
 // fatalError() causes the application to generate a crash log and
terminate. You should not use this function in a shipping application, although

364

it may be useful during development.

 /*
 Typical reasons for an error here include:
 * The parent directory does not exist, cannot be created, or
disallows writing.
 * The persistent store is not accessible, due to permissions or
data protection when the device is locked.
 * The device is out of space.
 * The store could not be migrated to the current model version.
 Check the error message to determine what the actual problem was.
 */
 fatalError("Unresolved error \(error), \(error.userInfo)")
 }
 })
 return container
}()

// MARK: - Core Data Saving support

func saveContext () {
 let context = persistentContainer.viewContext
 if context.hasChanges {
 do {
 try context.save()
 } catch {
 // Replace this implementation with code to handle the error
appropriately.
 // fatalError() causes the application to generate a crash log and
terminate. You should not use this function in a shipping application, although
it may be useful during development.
 let nserror = error as NSError
 fatalError("Unresolved error \(nserror), \(nserror.userInfo)")
 }
 }
}

The generated code provides a variable and a method:

The variable persistentContainer is an instance of NSPersistentContainer , and has been
initialized with a persistent store named "CoreDataDemo". Later, you will use this variable
to interact with the Core Data stack.
The saveContext() method provides data saving. When you need to insert/update/delete
data in the persistent store, you will call up this method.

If you've used Core Data in older version of Xcode, you should find that the generated code has

365

been greatly simplified. NSPersistentContainer encapsulates the Core Data stack, and
simplifies the way of using Core Data.

The question is how we can use this code template in our existing Xcode project. You can
simply copy and paste the code into the AppDelegate.swift file of your Food Pin project, but
you will need to make a minor change.

let container = NSPersistentContainer(name: "CoreDataDemo")

The original code template was generated for the CoreDataDemo project. Xcode names the
SQLite and data model file using the project name. For the FoodPin project, we use the name
FoodPin instead. So change the above line of code to the following:

let container = NSPersistentContainer(name: "FoodPin")

Finally, add the import statement at the beginning of the AppDelegate class to import the
Core Data framework:

import CoreData

Quick note: For reference, you can also download this project template
(http://www.appcoda.com/resources/swift3/FoodPinCoreDataTemplate.zip) to
continue.

Now that you've prepared the code for accessing the Core Data stack, let's move on to create
the data model. In the project navigator, right-click the FoodPin folder and select New
File... . Choose Core Data and select Data Model.

Creating the Data Model

366

http://www.appcoda.com/resources/swift3/FoodPinCoreDataTemplate.zip

Figure 19-3. Creating the data model using Data Model template

Name the model FoodPin and click Create to create the data model. Once created, you should
find a file named FoodPin.xcdatamodeld in the project navigator. Select it to open the data
model editor. From here, you can create entities for your data model.

As we would like to store the Restaurant object in database, we will create a Restaurant entity
that matches the Restaurant class in our code. To create an entity, click the Add Entity button
at the bottom of the editor pane and name the entity Restaurant .

In order to save the data from the Restaurant object to the database, we will add several
attributes for the entity that align with the attributes of the object. Simply click the + button
under the attributes section to create a new attribute. Add six attributes for the Restaurant
entity including name, type, location, image, isVisited, and rating. Refer to figure 19-4 for

367

details.

Figure 19-4. Adding attributes to the Restaurant entity

The attribute types of name, type, location, phoneNumber, isVisited, and rating are trivial, but
why do we set the attribute type of image to Binary Data?

Presently, the restaurant images are bundled in the app, and managed by the asset catalog.
This is why we can load an image by passing UIImage with the set name. When user creates a
new restaurant, the image is loaded from an external source whether it's from the built-in
photo library or taken from camera. In this case, we can't just store the file name. Instead, we
save the actual data of the image into database. Binary data type is used for this purpose.

If you select a particular attribute, you can further configure its properties in the Data Model
inspector. For example, the name attribute is a required attribute. You can uncheck the
Optional checkbox to make it mandatory. For the FoodPin project, you can set the name, type,
and location as required.

368

Figure 19-5. Editing attribute properties in the Data Model inspector

Model objects that tie into in the Core Data framework are known as managed objects, which
are at the heart of any Core Data application. Now that you've created the managed object
model, the next thing is to create the managed objects.

For the FoodPin project, you can manually convert the Restaurant class to a managed object
class. In Xcode 8, however, you can let the development tool do it for you. By referencing the
entity model, Xcode can automatically generate the managed object class for you.

Note: You're probably wondering why we have to create a managed object class.
Do you remember the relationship between outlet variables and UI objects in
Interface Builder? By updating the value of outlets, we can modify the content
of UI objects. Here the manage objects is very similar to outlet variables. You
can modify the entity's content by updating the managed object.

Creating Managed Objects

369

Figure 19-6. Sample relationship between model object and entity

Now select the Restaurant entity and go to the Data Model inspector. You should see the Class
section. Set the class name to RestaurantMO and the Codegen option to Class Definition.

Figure 19-7. Assign the entity with the Restaurant class

370

That's it. Xcode will generate the class for you when you build the project. You can simply run
the app or press command-B to build the project.

You will not find the generated class in the project navigator. It's stored somewhere else in the
project folder. But you're now ready to use in your code.

Since we are going to save the restaurant object into the database, we now have to replace the
original Restaurant class with the new RestaurantMO class.

Let's start with the RestaurantTableViewController.swift file. We no longer need to initialize
the restaurants array with default values as we will pull the data from database. Therefore,
declare the restaurants object like this:

var restaurants:[RestaurantMO] = []

Once you make the change, you will see quite a number of errors in Xcode. First, in
 RestaurantTableViewController.swift , you no longer use file name to load an image.

cell.thumbnailImageView.image = UIImage(named:
restaurants[indexPath.row].image)

The image is now stored as a Data object. To load the image, instead of passing the image
through the named parameter, initialize the UIImage object using the data parameter:

cell.thumbnailImageView.image = UIImage(data: restaurants[indexPath.row].image
as! Data)

The same applies to the line of code in tableView(_:editActionsForRowAt:) :

if let imageToShare = UIImage(data: self.restaurants[indexPath.row].image as!
Data) {

Also, the properties of RestaurantMO are now generated as an optional. So you will have to
replace the defaultText variable with this line of code in order to unwrap the optional:

let defaultText = "Just checking in at " +
self.restaurants[indexPath.row].name!

Next, let's move onto RestaurantDetailViewController.swift .

371

First, we have to change the type of the restaurant variable from Restaurant to RestaurantMO :

var restaurant:RestaurantMO!

Again, you will see some errors after changing the code. In the viewDidLoad() method,
initialize the restaurant image using data instead of name:

restaurantImageView.image = UIImage(data: restaurant.image as! Data)

Also, you will need to unwrap the restaurant location when calling geocodeAddressString :

geoCoder.geocodeAddressString(restaurant.location!, completionHandler: {
placemarks, error in

For the MapViewController class, we will apply the similar change. Modify the type of the
restaurant variable to RestaurantMO :

var restaurant:RestaurantMO!

Then fix any errors related to the change. Here is an example:

leftIconView.image = UIImage(data: restaurant.image as! Data)

Lastly, change the type of the restaurant variable in ReviewViewController.swift :

var restaurant:RestaurantMO?

In the viewDidLoad() method, modify the line of code that loads the image like this:

restaurantImageView.image = UIImage(data: restaurant.image as! Data)

Quick note: I encourage you to fix the errors on your own. But for reference,
you can download the Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinCoreDataTemplate2.zip.

As there is no restaurant data, your app should now display a blank table when launched. Next
up, we'll implement the AddTableViewController class and save a new restaurant to database.

Working with Managed Objects

372

http://www.appcoda.com/resources/swift3/FoodPinCoreDataTemplate2.zip

Now that we have converted our FoodPin project to use managed objects, the next question is
how can we use the objects to save data into the database?

With the introduction of NSPersistentContainer in iOS 10, the complexity involved in setting
up a Core Data stack had been dramatically reduced. Common operations, such as inserting a
record to database, are a lot simpler. To save a restaurant, you basically need to handle a
couple of things:

1. Create a RestaurantMO object with the view context of the persistent container and then
set its properties as usual.

restaurant = RestaurantModel(context:
appDelegate.persistentContainer.viewContext)
restaurant.name = "Upstate"
restaurant.type = "Cafe"
restaurant.location = "New York"

2. Next, you call the saveContext() method in AppDelegate to save the data to the database:

appDelegate.saveContext()

That's it. As you can see, Core Data shields you away from the underlying logics of database
management. You do not need to understand how to insert a record into the database using
SQL. All is done by using the Core Data APIs.

With some basic understanding about managed objects, let's update the
 AddTableViewController class to save a new restaurant to the database.

First, add the following import statement at the very beginning of
 AddTableViewController.swift so that the class can utilize the Core Data framework:

import CoreData

Declare a restaurant variable in the AddTableViewController class:

var restaurant:RestaurantMO!

Saving a New Restaurant to the Database

373

In the save method, apply what you've just learned to save the restaurant object into the
persistent store. Insert the following code before calling the dismiss method:

if let appDelegate = (UIApplication.shared.delegate as? AppDelegate) {
 restaurant = RestaurantMO(context:
appDelegate.persistentContainer.viewContext)
 restaurant.name = nameTextField.text
 restaurant.type = typeTextField.text
 restaurant.location = locationTextField.text
 restaurant.isVisited = isVisited

 if let restaurantImage = photoImageView.image {
 if let imageData = UIImagePNGRepresentation(restaurantImage) {
 restaurant.image = NSData(data: imageData)
 }
 }

 print("Saving data to context ...")
 appDelegate.saveContext()

}

The above code is pretty much the same as what we discussed in the previous section.
However, there are a few lines of code that are new to you. First, it's the following line of code:

if let appDelegate = (UIApplication.shared.delegate as? AppDelegate) {

The persistentContainer variable is declared in AppDelegate.swift . To access the variable, we
have to first get a reference to AppDelegate . In iOS SDK, you can use
 UIApplication.shared.delegate as? AppDelegate to get the AppDelegate object.

Next, it's related to the image property.

if let imageData = UIImagePNGRepresentation(restaurantImage) {
 restaurant.image = NSData(data: imageData)
}

Recalled that the image type of the Restaurant Entity is set to Binary Data, in this case, the
image property of the generated RestaurantMO has a type of NSData .

Therefore, when we set the value of the image property, we have to retrieve the data of the
selected image and convert it to an NSData object. The UIKit framework provides a set of built-

374

in functions for graphics operations. The UIImagePNGRepresentation function allows us to get
the data of a specified image in PNG format. We then create the NSData object using the image
data.

This is the piece of code you need to add a new restaurant to database. If you run the app now
and save a new restaurant, the app should be able to save the record into database without any
errors. However, your app is not ready to display the restaurant just added. That's what we're
going to do next.

To fetch data using Core Data, the simplest way is to create a fetch request and then use the
 fetch method provided by the view context:

if let appDelegate = (UIApplication.shared.delegate as? AppDelegate) {
 let request: NSFetchRequest<RestaurantMO> = RestaurantMO.fetchRequest()
 let context = appDelegate.persistentContainer.viewContext
 do {
 restaurants = try context.fetch(request)
 } catch {
 print(error)
 }
}

The generated RestaurantMO class has a built-in fetchRequest() method. When called, it
returns you an NSFetchRequest object that specifies the search criteria and which entity to
search (here, it is the Restaurant entity).

With the fetch request, we can then call the fetch method of viewContext to retrieve data
from a persistent store (here, it's the database).

Note: Swift comes with an exception-like model using try-throw-catch keywords.
You use do-catch statement to catch errors and handle them accordingly. As you
may notice, we put a try keyword in front of the method call. With the
introduction of the new error handling model in Swift 2.0, some methods can
throw errors to indicate failures. When we invoke a throwing method, you will
need to put a try keyword in front of it. For details of error handling, please
refer to the appendix.

You can put the above code in the viewWillAppear method to load the latest restaurant objects

Fetching Data Using Core Data

375

from database. However, we're not going to use the convenient method for fetching the
records. Instead, I'll introduce you another API called NSFetchedResultsController .

You may wonder why we don't just use the simple method - the primary reason is for
performance. Every time a user adds a new record or removes a record from database, we load
all restaurant records from database and re-display them in the table view. This is not an
efficient way to manage the data. A better way to do that is like this:

When adding a new record, we add a new row in the table view.
When removing a record, we just remove that row from the table view.

 NSFetchedResultsController is specially designed for managing the results returned from a
Core Data fetch request, and providing data for a table view. It monitors changes to objects in
the managed object context and reports changes in the result set to its delegate.

Let's see how to use NSFetchedResultsController to retrieve the restaurants.

In RestaurantTableViewController.swift , first import the CoreData framework:

import CoreData

Then adopt the NSFetchedResultsControllerDelegate protocol:

class RestaurantTableViewController: UITableViewController,
NSFetchedResultsControllerDelegate

The NSFetchedResultsControllerDelegate protocol provides methods to notify its delegate
whenever there are any changes in the controller's fetch results. Later we'll implement the
methods. For now, declare an instance variable for the fetched results controller:

var fetchResultController: NSFetchedResultsController<RestaurantMO>!

And add the following code in the viewDidLoad method:

// Fetch data from data store
let fetchRequest: NSFetchRequest<RestaurantMO> = RestaurantMO.fetchRequest()
let sortDescriptor = NSSortDescriptor(key: "name", ascending: true)
fetchRequest.sortDescriptors = [sortDescriptor]

376

if let appDelegate = (UIApplication.shared.delegate as? AppDelegate) {
 let context = appDelegate.persistentContainer.viewContext
 fetchResultController = NSFetchedResultsController(fetchRequest:
fetchRequest, managedObjectContext: context, sectionNameKeyPath: nil,
cacheName: nil)
 fetchResultController.delegate = self

 do {
 try fetchResultController.performFetch()
 if let fetchedObjects = fetchResultController.fetchedObjects {
 restaurants = fetchedObjects
 }
 } catch {
 print(error)
 }
}

We first get the NSFetchRequest object from RestaurantMO and specify the sort order using an
 NSSortDescriptor object. NSSortDescriptor lets you describe how the fetched objects are
sorted. Here we specify that the RestaurantMO objects should be sorted in ascending order
using the name key.

After creating the fetch request, we initialize fetchResultController and specify its delegate
for monitoring data changes. Lastly, we call the performFetch() method to execute the fetch
request. When complete, we get the RestaurantMO objects by accessing the fetchedObjects
property.

If you compile and run the app now, it should display the restaurants that you previously
added. However, if you try to add another new restaurant, the table does not refresh with the
new record.

There are still something left.

When there is any content change, the following methods of the
 NSFetchedResultsControllerDelegate protocol will be called:

controllerWillChangeContent(_:)
controller(_:didChange:at:for:newIndexPath:)
controllerDidChangeContent(_:)

Here is the implementation. Insert the following code in the RestaurantTableViewController

377

class:

func controllerWillChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {
 tableView.beginUpdates()
}

func controller(_ controller: NSFetchedResultsController<NSFetchRequestResult>,
didChange anObject: Any, at indexPath: IndexPath?, for type:
NSFetchedResultsChangeType, newIndexPath: IndexPath?) {

 switch type {
 case .insert:
 if let newIndexPath = newIndexPath {
 tableView.insertRows(at: [newIndexPath], with: .fade)
 }
 case .delete:
 if let indexPath = indexPath {
 tableView.deleteRows(at: [indexPath], with: .fade)
 }
 case .update:
 if let indexPath = indexPath {
 tableView.reloadRows(at: [indexPath], with: .fade)
 }
 default:
 tableView.reloadData()
 }

 if let fetchedObjects = controller.fetchedObjects {
 restaurants = fetchedObjects as! [RestaurantMO]
 }
}

func controllerDidChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {
 tableView.endUpdates()
}

The first method is called when NSFetchedResultsController is about to start processing the
content change. We tell the table view, "Hey, we're going to update the table. Get ready for it."
This is done by calling tableView.beginUpdates() .

When there is any content change in the managed object context (e.g. a new restaurant is
saved), the second method is automatically called. Here we determine the type of operation
and proceed with the required operation accordingly. For instance, we insert new rows when

378

the type is set to .Insert . Because the objects in the fetched results controller are changed, we
sync them with the restaurants array at the end of the method.

After NSFetchedResultsController completes the change, it calls the
 controllerDidChangeContent method. Here, we need to tell the table view that we've completed
the update and it will animate the change accordingly.

That's it. Now run the app again and create a few restaurants. The app should respond to the
change instantaneously.

Figure 19-8. Saving a new restaurant

To delete a record from the persistent data store, you just need to call a method named delete
with the managed object to delete. Then, you call the saveContext method to apply the

Deleting Data Using Core Data

379

changes. Here is a sample code snippet:

let context = appDelegate.persistentContainer.viewContext
context.delete(objectToDelete)
appDelegate.saveContext()

To remove the selected restaurant from database, you have to update the deleteAction
variable in the tableView(_:editActionsForRowAt:_) method like this:

let deleteAction = UITableViewRowAction(style:
UITableViewRowActionStyle.default, title: "Delete",handler: { (action,
indexPath) -> Void in

 if let appDelegate = (UIApplication.shared.delegate as? AppDelegate) {
 let context = appDelegate.persistentContainer.viewContext
 let restaurantToDelete = self.fetchResultController.object(at:
indexPath)
 context.delete(restaurantToDelete)

 appDelegate.saveContext()
 }

})

In the above code, we get the selected RestaurantMO object from fetchResultController and
then call the delete method to delete the item. Finally we call the saveContext() method to
apply the changes.

Now compile and run the app again. At this point, if you delete a record it should remove
completely from the database.

What if we need to update the rating of an existing restaurant? How can we update the record
in database?

Similar to creating a new restaurant, you can update a restaurant record in the persistent store
by updating the corresponding managed object and then call saveContext() to apply the
changes.

For example, to save the rating of a restaurant, you can update the close method of the

Updating a Managed Object

380

 RestaurantDetailViewController class like this:

@IBAction func ratingButtonTapped(segue: UIStoryboardSegue) {
 if let rating = segue.identifier {

 restaurant.isVisited = true

 switch rating {
 case "great": restaurant.rating = "Absolutely love it! Must try."
 case "good": restaurant.rating = "Pretty good."
 case "dislike": restaurant.rating = "I don't like it."
 default: break
 }
 }

 if let appDelegate = (UIApplication.shared.delegate as? AppDelegate) {
 appDelegate.saveContext()
 }

 tableView.reloadData()
}

The code is exactly the same as before, except that we add a couple line of code to call up
 appDelegate.saveContext() to save the changes to database.

I intentionally left out the phone number field for your implementation. Currently, there is no
way for users to input a phone number. Your exercise is to add the Phone Number field in the
New Restaurant screen, and save the information by using Core Data.

Your Exercise

381

Figure 19-11. Adding a Phone Number field in the New Restaurant screen

Congratulate yourself on making an app using Core Data. At this point, you should know how
to retrieve and manage data in a persistent data store. Core Data is a powerful framework for
working with persistent data especially for those who do not have any database knowledge.
The new class `NSPersistentContainer, introduced in iOS 10, encapsulates the whole Core
Data stack and makes working with Core Data a breeze, especially for beginners.

This chapter gives you a brief overview of Core Data. I hope you understand the basics of Core
Data, and how to use it to store persistent data. Though we will not further discuss Core Data
in this book, don't stop learning and exploring. You can check out Apple's official reference
(https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdPr
ogrammingGuide.html) to learn more.

Summary

382

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html

For reference, you can download the complete Xcode from
http://www.appcoda.com/resources/swift3/FoodPinCoreDataFinal.zip.

Are you ready to further improve the app? I hope you're still with me. Let's move on and take a
look how to add a search bar.

383

http://www.appcoda.com/resources/swift3/FoodPinCoreDataFinal.zip

I knew that if I failed I wouldn't regret that, but I knew the one thing I might regret is not
trying.

– Jeff Bezos

For most of the table-based apps, it is common to have a search bar at the top of the screen.
How can you implement a search bar for data searching? In this chapter, we will add a search
bar to the FoodPin app. With the search bar, we will enhance the app to let users search
through the available restaurants.

Chapter 20
Search Bar and UISearchController

384

In iOS 8, a new class called UISearchController was introduced to replace the
 UISearchDisplayController API that has been around since iOS 3. The old API is now
deprecated. If you have some experience with iOS 7 or older version of SDK, remember to use
 UISearchController instead.

The UISearchController API simplifies the way to create a search bar and manage search
results. You're no longer limited to embed search in table view controller but can use it in any
view controller like collection view controller. Even more, it offers developers flexibility to
influence the search bar animation through a custom animator object.

With UISearchController , adding a search bar to your app is quite an easy task. Let's get
started to implement a default search bar and see how we can filter the restaurant data.

In general, to add a search bar in a table-based app, it essentially comes down to the following
lines of code:

searchController = UISearchController(searchResultsController: nil)
searchController.searchResultsUpdater = self
tableView.tableHeaderView = searchController.searchBar

The first line of code creates an instance of UISearchController . If you pass a nil value, that
means the search results would be displayed in the same view that you're searching.
Optionally, you can specify another view controller for displaying the search result.

You may wonder when you need to define another view controller. Take the FoodPin app as an
example. If nil is used, the search results will be displayed in the table view. Figure 20-1
shows the format of search results. As you can see, the display style is exactly the same as that
of the table view. If you want to display the search results in a different format, you will need to
create another view controller and specify it during the initialization of UISearchController .

Using UISearchController

385

Figure 20-1. A standard search bar in iOS

The second line of code tells the search controller which object is responsible for updating the
search result. It can be any object in your application or simply the current one.

The last line of code adds the search bar to the header view of the table view.

Now let's try to add a search bar in the FoodPin app. Open
 RestaurantTableViewController.swift , declare the searchController variable:

var searchController:UISearchController!

Then add the following lines of code in the viewDidLoad method:

searchController = UISearchController(searchResultsController: nil)
tableView.tableHeaderView = searchController.searchBar

As I have explained the code before, I will not go over it again. But as you can see, you can add
a default search bar with just two lines of code. If you compile and run the app now, you should
find a search bar below the navigation bar. However, it doesn't work yet because we haven't
implemented the search logic.

Adding a Search Bar

386

Figure 20-2. Search bar added in the header of table view

The search controller doesn't provide any default functions to filter your data. It's your
responsibility to provide your own implementation to filter the content. For the FoodPin app,
it will allows users to do a search against the name of a restaurant. In order to implement such
search feature, first declare a new variable in the RestaurantTableViewController class to store
the search results:

var searchResults:[RestaurantMO] = []

Add the following code to create a new method for content filtering:

func filterContent(for searchText: String) {
 searchResults = restaurants.filter({ (restaurant) -> Bool in
 if let name = restaurant.name {
 let isMatch = name.localizedCaseInsensitiveContains(searchText)
 return isMatch
 }

 return false
 })
}

In Swift, there is a built-in method called filter for filtering an existing array. You use
 filter to loop over a collection and return a new array containing those items that match the
specified condition. For example, the new array can only contain restaurants with the name
starts with"up".

The filter method takes in a block of code in which you provide the filtering rule. For those

Filtering Content

387

elements to be included, you indicate with a return value of true . Otherwise, false is
returned and that element will be excluded.

In the above code, we use the localizedCaseInsensitiveContains method to see if the
restaurant name contains the search text, regardless of the case of the string (i.e. case-
insensitive). If the search text is found, the method returns true , indicating the restaurant
name should be included in the new array. Otherwise, a false is returned to exclude the item.

Now that we have implemented the search logic, how can we update and display the search
results on screen? To update the search result, you first need to adopt the
 UISearchResultsUpdating protocol:

class RestaurantTableViewController: UITableViewController,
NSFetchedResultsControllerDelegate, UISearchResultsUpdating

The protocol defines a method called updateSearchResults(for:) . When a user selects the
search bar or key in a search keyword, the method will be called. By implementing the method,
we can instruct the search controller to display the search results. Insert the following code
snippet in the RestaurantTableViewController class:

func updateSearchResults(for searchController: UISearchController) {
 if let searchText = searchController.searchBar.text {
 filterContent(for: searchText)
 tableView.reloadData()
 }
}

The code is very straightforward - we get the search text as entered by the user and pass it to
the filterContent(for:) method. Finally, reload the table data. As mentioned before, we use
the same table view to display the search results. This is why we call tableView.reloadData()
to load the search results..

 RestaurantTableViewController is now responsible for displaying a full list of restaurants and
the search results. The question is how can we figure out when it is used to display the search
result and when it is used to display all restaurant data?

Updating Search Results

388

Obviously, the app should display the search results only when the search controller is active.
The search controller provides a convenient property to verify its state. When the user taps the
search field, the search interface will be brought up. Its isActive property is then set to true .

We can use this property to determine if the table view controller is used to display a full list of
restaurants or the search results.

Now update the tableView(_:numberOfRowsInSection:) method like this:

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 if searchController.isActive {
 return searchResults.count
 } else {
 return restaurants.count
 }
}

When the search controller is active, we return the number of the search results. In case that
the search controller is inactive, we return the count of the full restaurant list.

The code in the tableView(_:cellForRowAt:) method should also be updated with an
additional condition:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {

 let cellIdentifier = "Cell"
 let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier,
for: indexPath) as! RestaurantTableViewCell

 // Determine if we get the restaurant from search result or the original
array
 let restaurant = (searchController.isActive) ? searchResults[indexPath.row]
: restaurants[indexPath.row]

 // Configure the cell...
 cell.nameLabel.text = restaurant.name
 cell.thumbnailImageView.image = UIImage(data: restaurant.image as! Data)
 cell.locationLabel.text = restaurant.location
 cell.typeLabel.text = restaurant.type

 cell.accessoryType = restaurant.isVisited ? .checkmark : .none

389

 return cell
}

Again, we check if the search controller is active. If the user is doing a search, retrieve the
restaurant from the search result rather than the restaurants array. Here is the line of code that
does the magic:

Recall that the app displays two action buttons (Share & Delete) when a user swipes the cell;
you probably don't want to show the buttons in the search results. You can simply implement
the following method and indicate the cell is non-editable when the search controller is active.

override func tableView(_ tableView: UITableView, canEditRowAt indexPath:
IndexPath) -> Bool {
 if searchController.isActive {
 return false
 } else {
 return true
 }
}

Similarly, update the following line of code in the prepare(for:) method:

destinationController.restaurant = (searchController.isActive) ?
searchResults[indexPath.row] : restaurants[indexPath.row]

When passing the selected restaurant to the detail view controller, it's important to check if the
search is active and pass the correct restaurant.

You're almost done. The very last thing is to add the following lines of code in the viewDidLoad
method:

searchController.searchResultsUpdater = self
searchController.dimsBackgroundDuringPresentation = false

The first line assigns the current class as the search results updater. The
 dimsBackgroundDuringPresentation property controls whether the underlying content is
dimmed during a search. Because we are presenting the search results in the same view, the
property should be set to false .

Cool! You're ready to fire up your app and test out the search function. What's great is that you

390

can navigate to the restaurant details by tapping the search results. Everything in the original
table view controller is reused.

Figure 20-3. Search results

 UISearchBar provides several options for customizing the appearance of a search bar. You can
access its properties by using the following line of code:

searchController.searchBar.tintColor

Here are some of the common properties for the customization.

placeholder - you can use the placeholder property to set the default text when there is
no other text in the text field.
prompt - the prompt property allows you to display a single line of text at the top of the
search bar.
barTintColor - set the background color of the search bar.
tintColor - set the tint color of the key elements in the search bar. For example, you can
use the property to change the color of the Cancel button in the search bar.
searchBarStyle - specify the search bar's style. By default, it is set to .prominent . When
this style is set, the search bar has a translucent background, and the search field is

Customizing the Appearance of the Search Bar

391

opaque. Alternatively, you can change it to .minimal to remove the background and make
the search field translucent.

As an example, you can insert the following lines of code at the end of the viewDidLoad method
of the RestaurantTableViewController class:

searchController.searchBar.placeholder = "Search restaurants..."
searchController.searchBar.tintColor = UIColor.white
searchController.searchBar.barTintColor = UIColor(red: 218.0/255.0, green:
100.0/255.0, blue: 70.0/255.0, alpha: 1.0)

Figure 20-4 shows the custom search bar after customization. You can further refer to the
official documentation
(https://developer.apple.com/library/ios/documentation/UIKit/Reference/UISearchBar_Cla
ss/) for the full set of customizable properties.

Figure 20-4. Sample search bar after customization

Now the app only allows users to search restaurants by name. Your exercise is to enhance the
search feature so that it supports location search too. For example, if your user keys in Sydney
in the search field, the app searches through the restaurant list and shows you the restaurants
that are either located in Sydney or have "Sydney" in the restaurant name.

Your Exercise

392

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UISearchBar_Class/

Hint: You just need to modify the filterContent(for:) method to support
location search.

By now, you should know how to implement a search bar in an iOS app. We've made the
FoodPin app even better by enhancing it with a search feature; this search feature is
particularly important when you have a large amount of information to display. If you still
don't fully understand the search bar feature, go back and work through this chapter a second
time, step by step, before moving on.

In this chapter we only covered the basics of UISearchController . However, there are
numerous other ways to use a search bar in your app. For instance, you may want to display
the search bar only when the user taps a search button. To explore new ways of search bar
integration, I encourage you to check out the UICatalog demo from Apple
(https://developer.apple.com/library/prerelease/ios/samplecode/UICatalog/Introduction/Int
ro.html).

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinSearch.zip. The solution of the exercise is
included.

Summary

393

https://developer.apple.com/library/prerelease/ios/samplecode/UICatalog/Introduction/Intro.html
http://www.appcoda.com/resources/swift3/FoodPinSearch.zip

If you're interested in the living heart of what you do, focus on building things rather
than talking about them.

- Ryan Freitas, About.me

For the very first time launching an app, you probably find a series of walkthrough (or tutorial)
screens. Lately it's a common practice for mobile apps to step users through multi-screen
tutorial where all the features are demonstrated. Some said your app design probably fails if
your app needs walkthrough screens. Personally I don't hate walkthrough screens and mostly

Chapter 21
Building Walkthrough Screens with
UIPageViewController

394

find them pretty useful. Just make sure you keep it short and don't take it too far to include
long and boring tutorials. Here I'm not going to argue whether you should or should not
include walkthrough screens in your app. I just want to show you how. In this chapter, we'll
discuss how to use UIPageViewController to create walkthrough screens.

Figure 21-1. Sample Walkthrough Screens from SoundCloud

The UIPageViewController class was first introduced in iOS 5 SDK. It lets developers build
pages of content, for which each page is managed by its own view controller. The class was
further improved in iOS 6 to support the scrolling transition. With UIPageViewController ,
users can easily navigate between multiple pages through simple gestures. The page view
controller is not limited to creating walkthrough screens. You can find examples of page view
implementation in games like Angry Birds (the page that shows all available levels) or in book
apps (the page that displays the table of contents).

The UIPageViewController class is a highly configurable class. You're allowed to define:

395

the orientation of the page views – vertical or horizontal
the transition style – page curl transition style or scrolling transition style
the location of the spine – only applicable to page curl transition style
the space between pages – only applicable to scrolling transition style to define the inter-
page spacing

We'll add a simple walkthrough for the FoodPin app. By implementing this new feature, you'll
learn how UIPageViewController works along the way. That said, we'll not demonstrate every
option of UIPageViewController ; we'll just use the scrolling transition style to display a series
of walkthrough screens. With the basic understanding of the UIPageViewController, however,
I believe you should be able to explore other features in the page view controller.

Let's get started.

Let's have a quick look at the walkthrough screens. The app will display a total of three screens
during the walkthrough. The user will be able to navigate between pages by swiping through
the screen or tapping the arrow icon. In the last screen of the walkthrough, it displays a Get
Started button. When the user taps the button, the walkthrough screen will be dismissed and
never be shown again. Figure 21-2 shows the screenshots of the walkthrough.

A Quick Look at the Walkthrough Screens

396

Figure 21-2. Walkthrough screens for the FoodPin app

Open the FoodPin project and jump to Main.storyboard .

Note: You can download the FoodPin project from
http://www.appcoda.com/resources/swift3/FoodPinSearch.zip

In the Object library, drag a page view controller to the storyboard. As you can see, there are
multiple options for configuring the behavior of the controller under the Attribute inspector.
You can customize the navigation style (horizontal/vertical), transition style, page spacing, and
spine location.

Adding UIPageViewController in Storyboard

397

http://www.appcoda.com/resources/swift3/FoodPinSearch.zip

Figure 21-3. Page View Controller in Interface Builder

By default, the transition style of the page view controller is set as Page Curl . This style is
perfect for book apps. For walkthrough screens, we prefer to use scrolling style. In the
Attributes inspector, change the transition style to Scroll .

Next, assign a storyboard ID to the page view controller. In the Identity inspector, set the
storyboard ID of the page view controller to WalkthroughController . Later we will use the ID
for creating the controller programatically. This storyboard ID is optional, but if you need to
use it in your code. You have to give the controller a storyboard ID.

398

Figure 21-4. Set a Storyboard ID for the Page View Controller

For now, you can't layout the walkthrough screens directly on the page view controller. Before
I show you how, let's see how the page view controller works.

Like UINavigationController , the UIPageViewController class is classified as a container
controller. The container controller is designed to hold and manage multiple view controllers
shown in an app, as well as, control how one view controller switches to another. Here
 UIPageViewController is the container controller that lets users navigate from page to page.
Each page is actually managed by its own view controller known as page content view
controller. Figure 21-5 depicts the relationship between the page view controller and the page
content view controller.

Understanding Page View Controllers

399

Figure 21-5. Relationship between the page view controller and the page content view
controller

Therefore, to create the walkthrough screens, we need to add a view controller to the
storyboard. You may be curious why we just add a single view controller for three pages of
content. Shouldn't we add three view controllers?

Take a look figure 21-5 again. All walkthrough screens look very similar. Instead of building a
view controller for each screen, it's better to reuse the same view controller and create different
screens programmatically.

First, download the image pack from
(http://www.appcoda.com/resources/swift3/walkthrough.zip) and add the images into
 Assets.xcasset . Next drag a view controller from the Object library to the storyboard. Follow
these procedures to layout the view:

Designing the Walkthrough Screens

400

http://www.appcoda.com/resources/swift3/walkthrough.zip

Set the background color of the view controller to red (#C0392B).
Add a label object and name it Personalize . Change to your preferred font and font size.
Set the alignment to center .
Add an image view object to the view controller, put it right below the Personalize label.
Set the width to 300 points and the height to 232 points.
Add another label object and name it Pin your favorite restaurants and create your own
food guide . Again change the font if you like and set the alignment to center . For the
number of lines, set it to zero. Resize the label to 282 by 64 points so it is big enough to
accommodate three lines of text.

You'll end up with a screen similar to that shown in figure 21-6.

Figure 21-6. Designing the View Controller for walkthrough screens

As usual, you have to define the layout constraints for the components:

For the first label object, add spacing constraints for the top side and define a constraint to
center it horizontally.

401

For the image view, add spacing constraints for top, left, right and bottom. Also add an
 Aspect ratio constraint.
For the second label object, define a constraint to center it horizontally. Also add
constraints to limit its width and height.

Lastly in the Identity inspector, set the storyboard ID of view controller to
 WalkthroughContentViewController . Later, we'll use this ID later in our code.

Note: By now you should be able to use auto layout, so I left out a lot of
details. If you have any difficulties defining the constraints, you can refer
to this Xcode project template
http://www.appcoda.com/resources/swift3/FoodPinWalkthrough1.zip for reference.

It's very straightforward to implement the page content view controller. Right-click the
FoodPin folder in the project navigator and select New File... . Name the class
 WalkthroughContentViewController and set it as a subclass of UIViewController .

In the WalkthroughContentViewController.swift file, declare the following outlet and instance
variables in the class:

@IBOutlet var headingLabel: UILabel!
@IBOutlet var contentLabel: UILabel!
@IBOutlet var contentImageView: UIImageView!

var index = 0
var heading = ""
var imageFile = ""
var content = ""

We will use this class to support multiple walkthrough screens. The index variable is used to
store the current page index. For instance, the first walkthrough screen will have the index
value of 0 . The view controller is designed to display an image, heading and content. So we
create three variables for data passing.

Next, change the viewDidLoad() method:

override func viewDidLoad() {
 super.viewDidLoad()

Creating WalkthroughContentViewController Class

402

http://www.appcoda.com/resources/swift3/FoodPinWalkthrough1.zip

 headingLabel.text = heading
 contentLabel.text = content
 contentImageView.image = UIImage(named: imageFile)
}

Here we initialize the labels and image view. As you should know, the next thing we have to do
is to establish a connection between the UI components and the outlet variables.

Go to Main.storyboard and select the content view controller you've created. In the Identity
inspector, set the custom class to WalkthroughContentViewController . Next, right-click the page
content view controller in the document outline and establish the following connections:

Connect the headingLabel outlet with the Personalize label.

Connect the contentLabel outlet with the description label.

Connect the contentImageView outlet with the Image View object.

Figure 21-7. Establishing connections with the outlet variables

403

Now that we've prepared the content view controller, the next step is to create each of the
content view controller and add it into the UIPageViewController so that the user can navigate
between them. You have two ways to tell UIPageViewController what to display; you either
provide the content view controllers one at a time or on-demand using a data source. If you
just want to display a certain view controller in UIPageViewController , you can call
 setViewControllers(_:direction:animated:completion:) method with the view controller to be
displayed.

As our app supports gesture-based navigation for the walkthrough, it's required to use the on-
demand approach. For this approach, you assign a data source object serving as the provider of
the content view controllers. Every time when a user navigates from one page to another,
 UIPageViewController asks its data source, "Hey, what content view controller should be
displayed? Please pass it to me." The data source object then returns the corresponding
content view controller.

The data source object should conform to the UIPageViewControllerDataSource protocol and
implement the following required methods:

pageViewController(_:viewControllerBefore:)
pageViewController(_:viewControllerAfter:)

Both methods may be called when a user navigates between pages. When called, the method is
passed with a specific view controller. Your job is to determine and return a content view
controller for display before/after the given controller. Let's say, if you have a content view
controller with the index value of 1 . The UIPageViewController object will ask:

Hey, what is the next view controller? In this case, you should return a content view
controller with index #2.
Hey, what is the before view controller? In this case, you should return a content view
controller with index #0.

Now that you have some ideas about how UIPageViewController works, we'll proceed to create
a new class for the page view controller. Right-click the FoodPin folder and select New File… .
Name the class WalkthroughPageViewController and set it as a subclass of

Implementing UIPageViewController

404

 UIPageViewController .

Once created, open WalkthroughPageViewController.swift and adopt the
 UIPageViewControllerDataSource protocol:

class WalkthroughPageViewController: UIPageViewController,
UIPageViewControllerDataSource

Declare and initialize the heading, content, and image variables, which are used when creating
the content view controllers:

var pageHeadings = ["Personalize", "Locate", "Discover"]
var pageImages = ["foodpin-intro-1", "foodpin-intro-2", "foodpin-intro-3"]
var pageContent = ["Pin your favorite restaurants and create your own food
guide",
 "Search and locate your favourite restaurant on Maps",
 "Find restaurants pinned by your friends and other foodies
around the world"]

Next, implement the two required methods of the UIPageViewControllerDataSource protocol:

func pageViewController(_ pageViewController: UIPageViewController,
viewControllerBefore viewController: UIViewController) -> UIViewController? {

 var index = (viewController as! WalkthroughContentViewController).index
 index -= 1

 return contentViewController(at: index)
}

func pageViewController(_ pageViewController: UIPageViewController,
viewControllerAfter viewController: UIViewController) -> UIViewController? {

 var index = (viewController as! WalkthroughContentViewController).index
 index += 1

 return contentViewController(at: index)
}

The above methods are very straightforward. First, we get the current page index of the given
view controller. Depending the method, we simply increase/decrease the index number and
return the view controller to display.

405

As you may notice, we haven't created the contentViewController(at:) method. This is a
helper method that is designed to create the page content view controller on demand. It takes
in the index parameter and creates the corresponding page content controller.

Now add the helper method in the WalkthroughPageViewController class:

func contentViewController(at index: Int) -> WalkthroughContentViewController?
{
 if index < 0 || index >= pageHeadings.count {
 return nil
 }

 // Create a new view controller and pass suitable data.
 if let pageContentViewController =
storyboard?.instantiateViewController(withIdentifier:
"WalkthroughContentViewController") as? WalkthroughContentViewController {

 pageContentViewController.imageFile = pageImages[index]
 pageContentViewController.heading = pageHeadings[index]
 pageContentViewController.content = pageContent[index]
 pageContentViewController.index = index

 return pageContentViewController
 }

 return nil
}

Recall that we have set a storyboard ID for the view controller when designing the user
interface. The ID is used as a reference for creating the view controller instance. To instantiate
a view controller in storyboard, you call the instantiateViewController(withIdentifier:)
method with a specific storyboard ID. The method returns an optional corresponding to the
storyboard ID. This is why we use as? to downcast the object to
 WalkthroughContentViewController . Following the instantiation, we assign the content view
controller with specific image, heading, content, and index.

Lastly, update the viewDidLoad method to the following:

override func viewDidLoad() {
 super.viewDidLoad()

 // Set the data source to itself
 dataSource = self

406

 // Create the first walkthrough screen
 if let startingViewController = contentViewController(at: 0) {
 setViewControllers([startingViewController], direction: .forward,
animated: true, completion: nil)
 }
}

In the above code, we set the data source of UIPageViewController to itself and create the first
content view controller when the page view controller is first set up.

With the class configured, go to storyboard and select the page view controller. In the Identity
inspector, change the custom class from UIPageViewController to
 WalkthroughPageViewController .

Figure 21-8. Setting the custom class

You're almost ready to test out the walkthrough screens. Because we want to bring up the page

Displaying the Walkthrough Screens

407

view controller when a user first launches the app. We have to instantiate the controller in the
 RestaurantTableViewController class. Simply add the following method:

override func viewDidAppear(_ animated: Bool) {
 if let pageViewController =
storyboard?.instantiateViewController(withIdentifier: "WalkthroughController")
as? WalkthroughPageViewController {

 present(pageViewController, animated: true, completion: nil)
 }
}

The code is self-readable. We just instantiate the WalkthroughPageViewController object and
present it in a modal way.

Now you're ready to hit the Run button and test the app. As soon as you launch the app, it
brings up the walkthrough screens and you can navigate through the screens using gestures.

Figure 21-9. Walkthrough screens without page indicator

408

The walkthrough screens work great, right? But the page indicator is now missing in the
screens. How can you add a page indicator?

The UIPageViewControllerDataSource protocol provides the following method to support a
standard page indicator:

 presentationCount(for:) - implements this method to return the total number of dots (or
pages) to be shown in the indicator
 presentationIndex(for:) - implements this method to return the index of the selected
item

All you need is to implement these two methods in the WalkthroughPageViewController class:

func presentationCount(for pageViewController: UIPageViewController) -> Int {
 return pageHeadings.count
}

func presentationIndex(for pageViewController: UIPageViewController) -> Int {
 if let pageContentViewController =
storyboard?.instantiateViewController(withIdentifier:
"WalkthroughContentViewController") as? WalkthroughContentViewController {

 return pageContentViewController.index
 }

 return 0
}

If you compile and run the app again, you should find a page indicator shown at the bottom of
the walkthrough screens.

Adding Default Page Indicator

409

Figure 21-10. A page indicator shown at the bottom of the screens

It's very easy to add the default page indicator. However, there is a catch - you can't change its
position. If you want to place it at other positions and add other customizations, you will need
to use a custom UIPageControl .

First, comment out or remove the code added in the previous section. We no longer need them
because we're going to implement a custom page control.

Go to Interface Builder and drag a page control object from the Object library to the
walkthrough content view controller. Place it right below the content label. In the Attributes
inspector, set the number of pages to 3 . You can also customize the tint color and background
if you like. I prefer to keep the default color. Your storyboard should look like this:

Adding a Custom Page Indicator

410

Figure 21-11. Adding page control

Control-drag from the page control to the view. Once released the buttons, add Vertical
Spacing to Bottom layout guide and Center Horizontally constraints.

Figure 21-12. Adding page control

Now the page control is ready to use. You can run the project to have a quick test. The app
should display a custom page control. But as you navigate through the walkthrough screens,
the white dot, that indicates the current page, does not change accordingly.

To make it work, we have to write a couple lines of code. First, create an outlet variable for the

411

page control in the WalkthroughContentViewController class:

@IBOutlet var pageControl: UIPageControl!

In the viewDidLoad method, add the following line of code to update the currentPage property
of the page control:

pageControl.currentPage = index

Go to Interface Builder and right-click the walkthrough content view controller in the
document outline. Then establish a connection with the pageControl outlet. That's it! You just
create your own page control. When you run the app, it should show the page indicator at the
bottom of the view.

The walkthrough screens work pretty great, but there is no way to dismiss it. What we're going
to do next is to add a DONE button at the last walkthrough screen. On top of that, we want to
provide an alternative way for user to navigate through the pages. We will add a NEXT button
to the first two pages of the walkthrough. When a user taps the button, it forwards to the next
screen with an animated transition.

Go to Main.storyboard and drag a button to the walkthrough content view controller. Name
the button NEXT. I put the button at bottom right corner of the view and change the text color
to white. It's up to you to customize the button's color and font.

Adding Next and Get Started Buttons

412

Figure 21-13. Sample design of the Next button

As mentioned before, the NEXT button is shown in the first two pages of the walkthrough,
while the DONE button is displayed at the last screen. To do that, we will change the button's
title based on the index of the walkthrough page. First, let's add an outlet variable in the
 WalkthroughContentViewController class:

@IBOutlet var forwardButton: UIButton!

In the viewDidLoad method, add the following lines of code:

switch index {
case 0...1: forwardButton.setTitle("NEXT", for: .normal)
case 2: forwardButton.setTitle("DONE", for: .normal)
default: break
}

The code should be self-explanatory. We change the button's title based on the page index. For
the first two page, we set the title to NEXT. For the last walkthrough page, we set the title to
DONE.

413

In Swift 2, it introduces the if case keyword. You can rewrite the code snippet
like this:

if case 0...1 = index {

 forwardButton.setTitle("NEXT", for: .normal)
} else if case 2 = index {
 forwardButton.setTitle("DONE", for: .normal)
}

Next, add an action method to handle the button tap:

@IBAction func nextButtonTapped(sender: UIButton) {

 switch index {
 case 0...1:
 let pageViewController = parent as! WalkthroughPageViewController
 pageViewController.forward(index: index)

 case 2:
 dismiss(animated: true, completion: nil)

 default: break

 }
}

Depending on the button type, the method performs different operation. If it's the NEXT
button, it will forward to the next page content view controller. In the above code, we call the
 forward method of the WalkthroughPageViewController object with the current page index. We
haven't implemented the forward method yet, so Xcode shows an error. For the DONE button,
we simply dismiss the page view controller and show the main screen of the app.

The forward method is a helper method in WalkthroughPageViewController.swift . We haven't
implemented it yet. So add the following code in the WalkthroughPageViewController class:

func forward(index: Int) {
 if let nextViewController = contentViewController(at: index + 1) {
 setViewControllers([nextViewController], direction: .forward, animated:
true, completion: nil)
 }

if case in Swift 2.0

414

}

The method takes in a page index and creates the next content view controller. If the controller
can be created, we call the built-in setViewControllers method and navigate to the next view
controller.

With the action method and outlets set up, the last thing is to connect them with the NEXT
button in storyboard. Right-click the walkthrough content view controller in the document
outline and establish the connections for the forwardButton outlet. Then control-drag the
NEXT button to the walkthrough content view controller. Release both buttons and select
 nextButtonTappedWithSender: event.

Figure 21-14. Connecting the action method with the button

Now you're ready to go. Your app should display a walkthrough screen as shown in figure 21-15
that supports both gesture-based and button-based navigation. When you tap the NEXT
button, it navigates to the next screen with an animated transition.

415

Figure 21-15. Walkthrough screens with the custom page indicator and next button

Now the walkthrough is up and running. However, it's displayed again and again, even you
dismiss it. It is because the viewDidAppear method, where we present the page view controller,
is called every time when the main screen appears. We haven't implemented any logic to
control the reappearance of the walkthrough screens.

Generally, walkthrough screens are displayed only when a user launches the app for the very
first time. In order to do so, we need to find a way to save a status that indicates whether the
user has viewed the walkthrough.

You've learned Core Data, you probably want to save the status in database. While this is an
option, there is a simpler way to save the application and user settings.

The iOS SDK comes with an UserDefaults class for managing application and user-related

Introducing UserDefaults

416

settings. For example, you can save a status to indicate whether the user has gone through the
walkthrough. Or if you've enhanced the app to display the average price of a basic meal and
want to allow users to configure the default currency, you can also use UserDefaults to save
the user's preference.

The UserDefaults class provides a programmatic interface for interacting with the defaults
system. The defaults system is created automatically and available for all code across your app.
Data stored in the defaults system is persistent. In another words, you can still access the data
even if the user quits the app or the app crashes.

To use UserDefaults , all you need is to get the shared defaults object:

UserDefaults.standard

Depending on the type of objects to retrieve, you can use one of the following methods to
retrieve the setting:

array(forKey:)
bool(forKey:)
data(forKey:)
dictionary(forKey:)
float(forKey:)
integer(forKey:)
object(forKey:)
stringArray(forKey:)
string(forKey:)
double(forKey:)
url(forKey:)

To save a setting in the defaults system, you set the value with a specific key. Here is an
example:

UserDefaults.standard.set(true, forKey: "hasViewedWalkthrough")

Working with UserDefaults

417

If you understand how UserDefaults works, you may know how to use it to save the
walkthrough status. After a user taps the DONE button, we save a status in the user defaults to
indicate that the user has gone through the tutorial. Open
 WalkthroughContentViewController.swift and update the nextButtonTapped method to the
following:

@IBAction func nextButtonTapped(sender: UIButton) {

 switch index {
 case 0...1: // Next Button
 let pageViewController = parent as! WalkthroughPageViewController
 pageViewController.forward(index: index)

 case 2: // Done Button
 UserDefaults.standard.set(true, forKey: "hasViewedWalkthrough")
 dismiss(animated: true, completion: nil)

 default: break

 }
}

When the DONE button is tapped, we add a hasViewedWalkthrough key to the user defaults and
set it to true .

Now open RestaurantTableViewController.swift and add a simple logic in the viewDidAppear
method to determine if it should present the page view controller. Update the method like this:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 if UserDefaults.standard.bool(forKey: "hasViewedWalkthrough") {
 return
 }

 if let pageViewController =
storyboard?.instantiateViewController(withIdentifier: "WalkthroughController")
as? WalkthroughPageViewController {

 present(pageViewController, animated: true, completion: nil)
 }
}

The change should be very straightforward. We just retrieve the hasViewedWalkthrough key

418

from the user defaults and check its value. The walkthrough controller will only be presented
when the value is set to false .

That's it. Run the project to have a quick test. Now once you tap the DONE button, the app will
no longer display the walkthrough screens.

In this chapter, we covered the basics of UIPageViewController and UserDefaults . We
demonstrated how to use both classes to implement walkthrough screens when an app is first
launched.

 UIPageViewController is a very handy class for implementing walkthrough or tutorial screens.
That said, the usage of UIPageViewController is unlimited. You can use it to display whatever
information you like such as pages of web view.

So far we just use the scroll transition style. Don't you know that you can easily use
 UIPageViewController to build a simple book app? Simply change the transition style from
scroll to page curl and see what you'll get.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinWalkthroughFinal.zip.

Summary

419

http://www.appcoda.com/resources/swift3/FoodPinWalkthroughFinal.zip

If you're trying to achieve, there will be roadblocks. I've had them; everybody has had
them. But obstacles don't have to stop you. If you run into a wall, don't turn around and
give up. Figure out how to climb it, go through it, or work around it.

- Michael Jordan

The tab bar is a row of persistently visible buttons at the bottom of the screen that open
different features of the app. Once a less-prominment UI design in the mainstream, the tab bar
design becomes popular again in 2015.

Chapter 22
Exploring Tab Bar Controller and
Storyboard References

420

One drawback of tab bars is that you sacrifice a bit of screen estate. At the time where there
were only 3.5-inch and 4-inch iPhones, this was really an issue. As Apple rolled out the iPhone
6 and 6 Plus with larger screen sizes in late 2014, app developers start to replace the existing
menus of their apps with tab bars. The Facebook app has switched from a sidebar menu design
to a tab bar. Other popular apps like Whatsapp, Twitter, Quora, Instagram, and Apple Music
also use tab bars for navigation.

Figure 22-1. A tab bar in the Twitter app

Tab bars allow users to access the core features of an app quickly, with just a single tap.
Though it takes up a bit of screen estate, it is worth it.

While navigation controllers let users navigate hierarchical content by managing a stack of
view controllers, tab bars manage multiple view controllers that don't necessarily have a
relation to one another. Normally a tab bar controller contains at least two tabs and you're
allowed to add up to five tabs depending on your needs.

In this chapter, I will walk you through the implementation of tab bars and see how we can
customize its appearance. We will also take a look at a rather new feature of Xcode called
storyboard references.

First, let's open the FoodPin project. We're going to create a tab bar with three items:

Favorites - this is the restaurant list screen.
Discover - this is a new screen to discover favorite restaurants recommended by your
friends or other foodies in the world. We will implement this tab in the iCloud chapter.

Building a Tab Bar Controller

421

About - this is the "About" the about screen of the app. Once again we'll keep this page
blank until the next chapter.

Creating a tab bar is easy and doesn't require to write a line of code. All you need to do is
embed a set of view controllers in a tab bar controller using Interface Builder.

Open the Main.storyboard file and select the Navigation Controller, which is the initial
controller of the app. This is the controller we want to embed in a tab bar controller. Now go
up to the Xcode menu, select Editor > Embed in > Tab Bar Controller.

422

Figure 22-3. Embed the navigation controller in a tab bar controller

Interface Builder automatically puts the navigation controller inside a tab bar controller. Easy,
right? You can then click the tab item in the navigation controller and change its properties in
the Attribute inspector. You can use your own images to create a custom tab item. For
simplicity, we just use the system items. Change the System Item option to Favorites. The tab
bar item should be updated like the one shown in figure 22-4.

423

Figure 22-4. Setting the tab bar item

It's now ready to test the app. Hit the Run button and see how it looks. The app should now
have a tab bar with the Favorites tab.

424

Figure 22-5. The FoodPin app now has a tab bar

Everything we implemented in the earlier chapters are now put right inside a tab bar
controller. If you select a restaurant, the app navigates to the detail view, and the tab bar is still
there. You may want to hide the tab bar in the detail view or any other views along the
navigation hierarchy. iOS provides a simple way to hide a tab bar when a view controller is
pushed on a navigation controller.

For example, to hide the tab bar in the detail view, you can select the detail view controller in
storyboard and enable the Hide Bottom Bar on Push option in the Attribute inspector. The tab
bar will be hidden when the detail view appears.

Hide Tab Bar When Pushed

425

Figure 22-6. Enabling the Hide Bottom Bar on Push option for the detail view controller

Alternatively, if you want to do it in code, you can add the following line of code in the
 prepare(for:) method of the RestaurantTableViewController class:

destinationController.hidesBottomBarWhenPushed = true

Try to test the app again. The tab bar should now disappear when you navigate to the detail
view.

There is no reason why an app needs a tab bar for displaying a single tab item. You use a tab
bar interface to organize your app into distinct modes of operation. Each tab opens a specific
feature. In general, there are at least two tabs in an app when a tab bar is used. We're going to
create two more tab items: Discover and About.

Drag a Navigation Controller object into the storyboard. The default navigation controller is

Adding New Tabs

426

associated with a table view controller. Simply change the title of the navigation bar to
Discover. For now keep everything else intact. We will deal with the implementation of this tab
in later chapters.

Figure 22-7. Navigation controller and table view controller in the Discover tab

Next, we want to make this set of controllers to be a part of the tab bar controller. All you have
to do is establish a relationship between the new navigation controller and the existing tab bar
controller. Press and hold the control key, drag from the tab bar controller to the new
navigation controller. Release both buttons, and select the Relationship Segue - View
Controllers option. This tells Xcode that the new navigation controller is a part of the tab bar
controller.

427

Figure 22-8. Link up the tab bar controller and the new navigation controller

As soon as the relationship is established, the tab bar controller automatically adds a new tab
and associates it with the new navigation controller. Change the tab bar item to Recent. Save
the storyboard and run the app again. You should now see the new Recents tab.

Quick note: For the sake of simplicity, we just use the system item. You may
wonder how to use your own title and image for the tab item. I will show you
how later in this chapter.

Repeat the same procedures to create another tab for About. Drag another navigation
controller and name the title of the table view controller to About. Then establish a
relationship with the tab bar controller. This will add another new tab in the tab bar controller.
Change the tab bar item of the new navigation controller to the system item More. The
connections in your storyboard for the two new controllers should be similar to that in figure
22-9.

428

Figure 22-9. The tab bar controllers are now added with two new tab items

Now you're ready to run to the app and have a quick test. The FoodPin app should display a tab
bar with three tab items - Favorites, Recent, and More. You're allowed to switch between tabs,
though the Discover and About screens are blank.

429

Figure 22-10. The FoodPin app now has three tabs

Up till now, we used the built-in tab items for the tab bar. Similar to the navigator bar, you can
use the Appearance API to customize the tab bar's appearance. Here are a couple of the
customization properties:

tintColor - this property allows you to change the tint color of the tab bar item.

UITabBar.appearance().tintColor = UIColor(red: 235.0/255.0, green: 75.0/255.0,
blue: 27.0/255.0, alpha: 1.0)

barTintColor - this property lets you change the tint color of the tab bar background.
The code below changes the background color to black:

UITabBar.appearance().barTintColor = UIColor.blackColor()

Customizing the Appearance of the Tab Bar

430

backgroundImage - this property lets you define a background image of the tab bar.

UITabBar.appearance().backgroundImage = UIImage(named: "tabbar-background")

Like before, you can put the customization code in the
 application(_:didFinishLaunchingWithOptions:) method of the AppDelegate class. Figure 22-
11 shows a sample custom tab bar.

Figure 22-11. Sample tab bar after customization

Quick note: You can further refer to the official documentation
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITabBar_Class/#//apple_ref/doc/uid/TP40007521-
CH3-SW4 about the appearance properties of the tab bar.

Instead of using the system item, you're allowed to use your own image and title for the tab bar
item. You can download these tab bar icons from
http://www.appcoda.com/resources/swift3/tabbaricons.zip and import them into
 Assets.xcasset .

To change the tab bar item, select the item in storyboard. In the Attribute inspector, change
System Item Option to Custom and set the Title/Image to your own values. For the Recent tab,
set the title to Discover and image to discover . For the More tab, change the title to About
and image to about . Optionally, you can also change the Favorite tab to use our own image.

Changing the Tab Bar Item Image

431

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITabBar_Class/#//apple_ref/doc/uid/TP40007521-CH3-SW4
http://www.appcoda.com/resources/swift3/tabbaricons.zip

Figure 22-12. Setting the title and image of a custom tab

If you test the app again, the tab bar will be like that shown in figure 22-13.

Figure 22-13. Change the image and title of a tab bar item

Note that I have set barTintColor to light gray. Here is the code:

UITabBar.appearance().barTintColor = UIColor(red: 236.0/255.0, green:

432

240.0/255.0, blue: 241.0/255.0, alpha: 1.0)

Optionally, you can specify a selection indicator image which is drawn behind the bar item icon
when a tab bar item is selected. You can simply set the selectionIndicatorImage property to
your own image.

UITabBar.appearance().selectionIndicatorImage = UIImage(named: "tabitem-
selected")

You can create a simple background image and assign it using the above code. Below shows a
sample selection indicator.

Figure 22-14. Sample selection indicator image

Storyboards are great that allow you to layout the app's UI visually. One complaint is that
storyboards are less managable as your project grows. Developers working in a large team are
reluctant to use storyboards. For most app projects, there is a single storyboard. This makes
collaboration really difficult.

Starting from Xcode 7, Apple rolled out a feature called storyboard references to make
storyboards more managable. Prior to Xcode 7, you can develop your own solution to break a
storyboard into smaller pieces, and link them up using code. Now this feature allows you to do
the same thing visually, right in Interface Builder.

Changing the Selection Indicator Image

Storyboard References

433

Let's use the FoodPin project as an example to see how storyboard references work. The app
now has three tabs: Favorites, Discover and About. Each of these tabs is implemented with its
own UI navigation controller. The view controllers under each tab are mostly independent of
the rest of the scenes in the storyboard. Suppose that you're working on the project with two
other members. Each team member is responsible for one of the tabs. It makes sense to pull
each tab out to its own storyboard.

To do that, go to Main.storyboard and select those view controllers that belong the About tab.
Go up to the editor menu and choose refactor to storyboard.

Figure 22-15. Refactor the About view controllers into a new storyboard

When prompted, give the new storyboard a name. Let's name it about.storyboard . Once you
confirm the change, Xcode pulls out the selected view controllers, and place them in the
 about.storyboard file. In Main.storyboard , it shows a storyboard reference. If you double-
click on the storyboard reference, Xcode will take you to the corresponding storyboard and

434

show you the view controllers that the main storyboard is referencing.

Figure 22-16. A storyboard reference

Repeat the same procedures to refactor the Discover tab, and name the new storyboard
 discover.storyboard .

By now you should know how to create a tab bar controller and add new tab bar items.
Interface Builder makes it very easy to embed any view controllers in a tab bar controller. Tab
bars provide users a quick access to different features of your app.

We also went over a feature of Xcode called storyboard references. As your storyboard
becomes more complex, you can break down a storyboard into multiple pieces to stay
organized. This feature is especially useful for teams. If you're reluctant to use storyboards, it is
time to think again and adopt storyboards in your app projects.

Summary

435

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinTabbar.zip.

436

http://www.appcoda.com/resources/swift3/FoodPinTabbar.zip

I've got a theory that if you give 100% all of the time, somehow things will work out in
the end.

- Larry Bird

It is very common you need to display web content in your apps. From iOS 9 and onward, it
provides three options for developers to show web content:

Mobile Safari - the iOS SDK provides APIs for you to open a specific URL in the built-in
Mobile Safari browser. In this case, your users temporarily leave the application and

Chapter 23
Getting Started with WKWebView and
SFSafariViewController

437

switch to Safari.
UIWebView / WKWebView - Before the release of iOS 9, this is the most convenient
way to embed web content in your app. You can think of UIWebView as a stripped-down
version of Safari. It is responsible to load a URL request and display the web content.
 WKWebView , introduced in iOS 8, is an improved version of UIWebView . It has the benefit of
the Nitro JavaScript engine and offers more features. If you just need to display a specific
web page, UIWebView or WKWebView is the best option for this scenario.
SFSafariViewController - this is a new controller introduced in iOS 9. While
 UIWebView allows you embed web content in your apps, you have to build a custom web
view to offer a complete web browsing experience. For example, UIWebView doesn't come
with the Back/Forward button that lets users navigate back and forth the browsing
history. In order to provide the feature, you have to develop a custom web browser using
 UIWebView . In iOS 9, Apple introduced SFSafariViewController to save developers from
creating our own web browser. By using SFSafariViewController , your users can enjoy all
the features of Mobile Safari without leaving your apps.

438

Figure 23-1. The About Screen

In this chapter, I will walk you through all the options and show you how to use them to
display web content. We have create about.storyboard in the previous chapter. However, we
didn't provide any implement yet. Take a look at figure 23-1. That is the About screen we're
going to create, and here are how each of the rows works:

Rate us on App Store - when selected, we will load a specific iTunes link in Mobile
Safari. Users will leave the current app and switch to the App Store.
Tell us your feedback - when selected, we will load a Contact Us web page using
 WKWebView .
Twitter / Facebook / Pinterest - each of these items has its own link for the
corresponding social profile. We will use SFSafariViewController to load these links.

Sounds interesting, right? Let's get started.

First, download the image pack from http://www.appcoda.com/resources/swift3/about-
logo.zip and import the images into Assets.xcasset .

Open about.storyboard to switch to Interface Builder. For the table view controller, drag an
image view to the header view of the table view (just like what we have done before when
designing the Add Restaurant controller). Change its height to 190 points. In the Attribute
inspector, set the image to about-logo and mode to Aspect fit . Next, select the table view
cell. In the Attributes inspector, set the cell's identifier to Cell and style to Basic . Your
design should look like figure 23-2.

Designing the About View

439

http://www.appcoda.com/resources/swift3/about-logo.zip

Figure 23-2. The layout of the About view

As usual, we need a class to associate with the table view controller in about.storyboard .
Right-click the FoodPin folder and select New File... . Name the class
 AboutTableViewController and set its subclass to UITableViewController . In
 about.storyboard , select the table view controller and set the custom class to
 AboutTableViewController in the Identity inspector.

Figure 23-3. Setting the custom class

Creating a Custom Class for the About View Controller

440

You should be very familiar with the implementation of table view. But this time, we have to
create two sections in the table view. Let's see how to do it.

First, declare three array variables that store the table content:

var sectionTitles = ["Leave Feedback", "Follow Us"]
var sectionContent = [["Rate us on App Store", "Tell us your feedback"],
 ["Twitter", "Facebook", "Pinterest"]]
var links = ["https://twitter.com/appcodamobile",
"https://facebook.com/appcodamobile", "https://www.pinterest.com/appcoda/"]

The first variable stores the section title. The sectionContent array keeps the table row item
for each of the section. Lastly, it's the links array which holds the URLs of the social profiles.

To create a table view with two sections, all you need to do is return 2 (or
 sectionTitles.count) in the numberOfSections(in:) method, and return the corresponding
number of rows in the tableView(_:numberOfRowsInSection:) method:

override func numberOfSections(in tableView: UITableView) -> Int {
 return sectionTitles.count
}

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return sectionContent[section].count
}

In other words, the tableView(_:numberOfRowsInSection:) method will return 2 for the first
section and 3 for the section section.

The UITableViewDataSource protocol provides an optional method called
 tableView(_:titleForHeaderInSection:) . To present the section title, you need to implement
the method and return the corresponding title for the specified section. Insert the following
code in the AboutTableViewController class:

override func tableView(_ tableView: UITableView, titleForHeaderInSection
section: Int) -> String? {
 return sectionTitles[section]

441

}

Lastly, implement the tableView(_:cellForRowAt:) to set the text label and return the cell:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for:
indexPath)

 // Configure the cell...
 cell.textLabel?.text = sectionContent[indexPath.section][indexPath.row]

 return cell
}

Before moving onto the next section, run the app and take a quick look. You have already
created the user interface of the About screen.

Figure 23-4. The About screen is now populated with content

442

If you want to remove the separator for those blank table rows after the second section, you
can just insert the following line of code in the viewDidLoad method:

tableView.tableFooterView = UIView(frame: CGRect.zero)

Now that we've prepared the user interface of the About view, let's start to explore the first
option of loading web content. When the Rate us on App Store option is selected, the app will
switch to Mobile Safari and load the content.

To open a link in the Safari browser, you just need to call the
 open(_:options:completionHandler:) method of UIApplication with a specific URL:

UIApplication.shared.open(url)

When the method is invoked, your user will leave the current application and switch to Safari
to load the web content. To handle table cell selection, as you know, we need to override the
 tableView(_didSelectRowAtIndexPath:) method. Insert the following code snippet:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 switch indexPath.section {
 // Leave us feedback section
 case 0:
 if indexPath.row == 0 {
 if let url = URL(string: "http://www.apple.com/itunes/charts/paid-
apps/") {
 UIApplication.shared.open(url)
 }
 }

 default:
 break
 }

 tableView.deselectRow(at: indexPath, animated: false)
}

Here we use a switch statement to check the section number. For the first row of the first
section (i.e. Rate us on App Store), we call UIApplication.shared.open(url) to open the Safari

Opening Web Content in Mobile Safari

443

browser. Typically we specify the iTunes link of the app in the call. However, that link is not
ready yet. I simply put an arbitrary link for demo purpose. Later when you're ready to release
your app, you can change it accordingly.

Now run the app in the simulator. In the About tab, tap the Rate us on App Store item. You'll
be switched to Mobile Safari and the web content should be loaded properly.

Figure 23-5. Displaying web content in Safari

It's very easy to open a web page in Mobile Safari. To load web content using WKWebView , it will
take you a few more steps.

The WKWebView class is a successor of UIWebView , which is capable of loading remote web
content. If you bundle an HTML file in your app, you can also use the class to load the web

Loading Web Content Using WKWebView

444

page locally.

In general, for apps that supports iOS 8 or later, it is recommended to use WKWebView instead
of UIWebView because WKWebView outperforms its predecessor in terms of page loading speed.

Practically, you need to create an URL object, followed by an URLRequest object, and then load
the request by calling the load method of WKWebView . Here is a sample code snippet:

if let url = URL(string: "http://www.appcoda.com/contact") {
 let request = URLRequest(url: url)
 webView.load(request)
}

The above code instructs the web view (i.e. the instance of WKWebView) to load web content
remotely. As mentioned before, you're allowed to load a local web page. Let's say, there is a
HTML file bundled in your app. You can initialize an URL object using the fileURLWithPath
parameter:

let url = URL(fileURLWithPath: "about.html")
let request = URLRequest(url: url)
webView.load(request)

 WKWebView will then load the web page locally, which works even without an Internet
connection.

With a basic understanding of the WKWebView class, let's start to implement it in the app. In
 about.storyboard , drag a View Controller object from the Object library to the storyboard.
Your view controller should look like figure 23-6.

445

Figure 23-6. Embedding a web view in a view controller

When the Tell us your feedback button is tapped, the app will transit to the new view
controller to display the web content. To do that, we have to define a segue between the About
view controller and the web view controller. Drag from the view controller button in the scene
dock to the new view controller. Release the buttons and select Show as the segue type. This
creates a segue between the two controllers. Select the segue and set the identifier to
 showWebView in the Attributes inspector.

As usual, the next step is to create a custom class the web view controller. Right-click the
FoodPin folder in the project navigator, and select New File... . Choose the Cocoa Touch
Class template and name the class WebViewController . Set it as a subclass of
 UIViewController . Click Next and save the file.

In the WebViewController.swift file, declare a variable for the web view:

var webView: WKWebView!

446

As WKWebView is in the WebKit framework, you have to insert the following import statement
at the very beginning of the file:

import WebKit

For the viewDidLoad method, update it with the following line of code to load a web page.
You're free to change the URL to a website of your choice:

override func viewDidLoad() {
 super.viewDidLoad()

 if let url = URL(string: "http://www.appcoda.com/contact") {
 let request = URLRequest(url: url)
 webView.load(request)
 }
}

We haven't created the WKWebView object yet. What we're going to do is instantiate the
 webView object and replace the view of the view controller with webView .

In order to achieve this, we will override the loadView method with the following code:

override func loadView() {
 webView = WKWebView()
 view = webView
}

The loadView method is called before the viewDidLoad method to create the view of the view
controller. Here we instantiate the webView object and set it as the view.

Now go back to the AboutTableViewController class and update the
 tableView(_didSelectRowAtIndexPath:) method like this:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 switch indexPath.section {
 // Leave us feedback section
 case 0:
 if indexPath.row == 0 {
 if let url = URL(string: "http://www.apple.com/itunes/charts/paid-
apps/") {
 UIApplication.shared.open(url)

447

 }
 } else if indexPath.row == 1 {
 performSegue(withIdentifier: "showWebView", sender: self)
 }

 default:
 break
 }

 tableView.deselectRow(at: indexPath, animated: false)
}

We just add another if clause for indexPath.row == 1 , which is the Tell us your feedback
cell. When the cell is selected, we simply call performSegue(withIdentifier:sender:) method to
trigger the showWebView segue and transit to the web view controller.

Now run the project to test out the changes. You should be able to load the web view controller,
but WKWebView can't load the URL, showing you a blank page.

What's the problem? It's due to the non-HTTPS URL. Starting from iOS 9, Apple introduced a
feature called App Transport Security or ATS for short. The purpose of this feature is to
improve the security of connections between an app and web services by enforcing some of the
best practices. One of them is the use of secure connections. With ATS, all network requests
should now be sent over HTTPS. If you make a network connection using HTTP, ATS will
block the request.

To resolve the issue, you should load a network request over HTTPS instead HTTP. That is
what Apple wants you to do. However, if the websites that you're talking to is out of your
control and that doesn't support HTTPS, how can you work around this restriction?

Apple provides an option for developers to disable ATS restrictions for content loaded inside of
web views. To do so, you need to set the value of the specific key named
 NSAllowsArbitraryLoadsInWebContent in your app's Info.plist .

The Info.plist file contains essential configuration information for your app. To edit the file,
select Info.plist in the project navigator to display the content in a property list editor. To
add a new key, right click the editor and select Add Row. For the key column, enter App
Transport Security Settings . Set the type to Dictionary . Next, follow the procedures in figure
23-7 to add the Allow Arbitrary Loads in Web Content key.

448

Figure 23-7. Adding the NSAllowsArbitraryLoads key

By setting the key to YES , you explicitly disable App Transport Security. Now run the app
again. It should be able to load the web page.

449

Figure 23-8. Loading a web page using UIWebView

Finally, let's talk about SFSafariViewController . As discussed earlier, this new controller
allows developers to embed a Safari browser in your app. It shares many great features of
Safari such as Safari AutoFill and Safari Reader. According to Apple, if your app displays web
content in a standard browser, it is recommended to use SFSafariViewController .

To embed SFSafariViewController in your app, all you need is a couple lines of code:

let safariController = SFSafariViewController(url: url)
present(safariController, animated: true, completion: nil)

You first creates the SFSafariViewController object with a specified URL. Optionally, you can
set entersReaderIfAvailable to true to enable Safari Reader. The next step is to present the

Loading Web Content Using SFSafariViewController

450

controller by calling the present(_:animated:completion:) method.

Now open the AboutTableViewController.swift file. We'll update the code so that the app
displays the social links (Twitter/Facebook/Pinterest) using SFSafariViewController . First,
insert the following import statement at the very beginning of the file:

import SafariServices

You have to import the SafariServices framework before using SFSafariViewController .
Next, update tableView(_:didSelectRowAtIndexPath:) to the following:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 switch indexPath.section {
 // Leave us feedback section
 case 0:
 if indexPath.row == 0 {
 if let url = URL(string: "http://www.apple.com/itunes/charts/paid-
apps/") {
 UIApplication.shared.open(url)
 }
 } else if indexPath.row == 1 {
 performSegue(withIdentifier: "showWebView", sender: self)
 }

 // Follow us section
 case 1:
 if let url = URL(string: links[indexPath.row]) {
 let safariController = SFSafariViewController(url: url)
 present(safariController, animated: true, completion: nil)
 }

 default:
 break
 }

 tableView.deselectRow(at: indexPath, animated: false)
}

In the above code, we add a new case (case 1) to handle the social profile item. The code is
very straightforward. We just load the link from the links array, and display the web content
with SFSafariViewController .

It's ready to test the app! Once launched, select About and tap a cell in the Follow us section.

451

The app will open the link in a Safari-like browser.

Figure 23-9. Loading a web page using UIWebView

We have just explored three options for displaying web content. The introduction of
 SFSafariViewController in iOS 9 provides developers a simple way to embed a web browser in
your app. With just a few lines of code, you can offer a first class browsing experience for your
users. If your app displays web content, the Safari view controller should save you a lot of time
from creating your own version of web browser.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinWebView.zip.

Summary

452

http://www.appcoda.com/resources/swift3/FoodPinWebView.zip

The most impressive people I know spent their time with their head down getting shit

Chapter 24
Exploring CloudKit

453

down for a long, long time.

- Sam Altman

Let's start with some history. When Steve Jobs unveiled iCloud to complement iOS 5 and OS X
Lion at Apple's annual Worldwide Developers Conference (WWDC) in 2011, it gained a lot of
attention but came as no surprise. Apps and games could store data on the cloud and have it
automatically synchronize between Macs and iOS devices.

But iCloud fell short as a cloud server.

Developers are not allowed to use iCloud to store public data for sharing. It is limited to
sharing information between multiple devices that belong to the same user. Take our Food Pin
app as an example - you can't use the classic version of iCloud to store your favorite restaurants
publicly and make them available for other app users. The data, that you save on iCloud, can
only be read by you.

If you wanted to build a social app to share data amongst users at that time, you either came up
with your home-brewed backend server (plus server-side APIs for data transfer, user
authentication, etc) or relied on other cloud server providers such as Parse.

Note: Parse was a very popular cloud service at the time. But Facebook
announced the demise of the service on January 28, 2016.

In 2014, the company reimagined iCloud functionality and offered entirely new ways for
developers, as well as, users to interact with iCloud. The introduction of CloudKit represents a
big improvement over its predecessor and the offering is huge for developers. You can develop
a social networking app or add social sharing features easily using CloudKit.

What if you have a web app and you want to access the same data on iCloud as your iOS app?
Apple further takes CloudKit to the next level by introducing CloudKit web services or
CloudKit JS, a JavaScript library. You can develop a web app with the new library to access the
same data on iCloud as your app.

454

Figure 24-1. Storing your data to the cloud

In WWDC 2016, Apple announced the introduction of Shared Database. Not only can you store
your data publicly or privately, CloudKit now lets you store and share the data with a group of
users.

CloudKit makes developers' lives easier by eliminating the need to develop our own server
solutions. With minimal setup and coding, CloudKit empowers your app to store data,
including structured data and assets, in the cloud.

Best of all, you can get started with CloudKit for free (with limits). It starts with:

10GB for assets (e.g. image)

455

100MB for database
2GB for data transfer

As your app becomes more popular, the CloudKit storage grows with you and adds an
additional 250MB for every single user. For each developer account, you can scale all the way
up to the following limits:

1PB assets
10TB database
200TB data transfer

That's a massive amount of free storage and is sufficient for the vast majority of apps.
According to Apple's iCloud calculator, the storage should be enough for about 10 million free
users.

With CloudKit, we were able to focus on building our app, and even squeeze in a few
extras.

- Hipstamatic

In this chapter, I will walk you through the integration of iCloud using the CloudKit
framework. But we will only focus on the Public database.

As always, you will learn the APIs by implementing a feature of the FoodPin app. We will
enhance the app to let users share their favorite restaurants anonymously, and all users can
view other's favorites in the Discover tab. It's going to be fun.

There is a catch, however. You have to enroll in Apple Developer Program (USD99/year).
Apple opens up the CloudKit storage for paid developers only. If you're serious about creating
your app, it's time to enroll in the program and build some CloudKit-based apps.

CloudKit is not just about storage. Apple provides the CloudKit framework for developers to
interact with iCloud. The CloudKit framework offers services for managing the data transfer to
and from iCloud servers. It's a transfer mechanism that takes your user's app data from the

Understanding CloudKit Framework

456

https://developer.apple.com/icloud/

device and transfers it to the cloud.

Importantly, CloudKit doesn't provide any local persistence and it only provides minimal
offline caching support. If you need caching or to persist the data locally, you should develop
your own solution.

Containers and databases are the fundamental elements of CloudKit framework. Every app has
its own container for managing its content. By default, one app talks to one container. The
container is exposed as the CKContainer class.

Inside of a container, it contains a public database, a shared database and a private database
for storing data. As the name suggests, the public database is accessible by all users of the app
and is designed to store shared data. Data stored in the private database is visible to a single
user, while data stored in the shared database (introduced in iOS 10) can be shared among a
group of users.

Apple lets you choose the type of database that best fits your app. For example, if you're
developing an Instagram-like app, you can use the public database to save photos uploaded by
users. Or if you're creating a To-do app, you probably want to use the private database to store
the to-do items per user. The public database doesn't require users to have an active iCloud
account unless you need to write data to the public database. Users need to log into the iCloud
before accessing its private database. In the CloudKit framework, the database is exposed as
the CKDatabase class.

457

Figure 24-2. Visual Representation of Containers and Databases

Navigating further down the hierarchy is Record Zone. CloudKit does not store data loosely.
Instead, records of data are partitioned in different Record Zones. Depending on the type of
database, it supports different types of record zone. Both private and public databases have a
default zone. It is good enough for most scenarios. That said, you're allowed to create custom
zones if needed. Record Zone is exposed as the CKRecordZone class in the framework.

At the heart of the data transaction is Record, represented by the CKRecord class. Record is
essentially a dictionary of key-value pairs. The key represents a record field. The associated
value of a key is the value of a specific record field. Each record has a record type. The record
type is defined by developers in the CloudKit dashboard. Meanwhile, you may be confused
about all these terms. No worries. You will understand what they mean after going through a
working demo.

458

Figure 24-3. Record zones and Records

Now that you have some ideas about the CloudKit framework, let's get started and build the
Discover tab. By integrating the app with CloudKit, you'll learn:

How to enable CloudKit in your app
How to use CloudKit Dashboard to create your records in the cloud
How to fetch records asynchronously from iCloud using the convenience API
How to fetch records from iCloud servers using the operational APIs
How to improve app performance using lazy loading
How to cache images using NSCache
How to save data to iCloud servers

Assuming you have enrolled in the Apple Developer Program, the first task is to register your
account in the Xcode project.

Enabling CloudKit in Your App

459

Note: In the project navigator, select the FoodPin project and then select
FoodPin under targets. If you are using `com.appcoda.FoodPin` as the bundle
identifier, you will need to change it to something else. Say, `.FoodPin`. If
you don't own a domain, you may use `.FoodPin`. Later, CloudKit will use the
bundle identifier to generate the container. Because the name space of
containers is global to all developers, you have to ensure the name is unique.

Under the General tab, if you haven't assigned a developer account in the Identity section,
simply click the dropdown box of the Team option. Select Add an account, you'll be prompted
to log in with your developer account. Follow the procedures and your developer account will
appear in the Team option.

Figure 24-4. Assigning a developer account for your Xcode project

Quick note: For this demo, I will use com.appcoda.FoodPinCloud as the bundle
identifier.

Assuming you have the identity and bundle identifier configured, navigate to the Capabilities
tab. To enable CloudKit, all you need to do is flip the iCloud switch to ON , and select CloudKit
for the services option. For containers, just leave it to use the default container. As soon as you
enable the iCloud option, Xcode automatically creates the default container on the CloudKit
server, and adds the necessary frameworks in the project.

460

Figure 24-5. Enabling CloudKit for your app

Quick tip: If you experience the error "An App ID with identifier is not
available. Please enter a different string.", you may need to choose another
bundle identifier.

You can click the CloudKit Dashboard button to open a web-based dashboard (see figure 24-
6). The dashboard lets you manage your container and perform operations like adding record
types and removing records. Before your app can save restaurant records to iCloud, you first
need to define a record type. Do you remember that we created a Restaurant entity when
working with Core Data? A record type in CloudKit is equivalent to an entity in Core Data.

Managing Your Record in CloudKit Dashboard

461

Figure 24-6. CloudKit Dashboard

In the left pane of the dashboard, select Record Types and click the + icon to create a new
record type. Name the record type Restaurant . In the record type, define the field name and
field type. CloudKit supports various attribute types such as String , Data/Time , Double and
 Location . If you need to store binary data like image, you use the Asset type. Now add the
following field names and types for the Restaurant record type:

Field Name Field Type

name String

type String

location String

phone String

image Asset

462

Figure 24-7. Creating the Restaurant record type

Note: CloudKit uses asset objects to incorporate external files such as image,
sound, video, text, and binary data files. An asset is exposed as the CKAsset
class and associated with a record. When saving an asset, CloudKit only saves
the asset data. It does not save the filename. Other than image, you can
configure the sort, query and search options for the rest of the fields.

Don't forget to click the Save button to save the change. With the record type configured, it's
ready for your app to save the restaurant records to iCloud. You have two ways to add records
to the database:

You either create the records through the CloudKit APIs.
Or you add the records via the CloudKit dashboard.

Let's try to populate some records using the dashboard. In the left pane, select Default Zone in
the Public Data section. This is the default record zone of your public database. By default, the
zone doesn't contain any records. You can click the + icon or New Record button to create one.
Simply key in the name, type, location, phone, and specify the image location. Then click Save
to save the record. Figure 24-8 shows a sample new record.

463

Figure 24-8. Adding a new record in CloudKit

Now you have created a Restaurant record in the cloud. Repeat the same procedures and
create around 10 records; we'll use them later.

The CloudKit framework provides two types of APIs for developers to interact with iCloud.
They are known as the convenience API and the operational API. Both APIs let you save and
fetch data from iCloud asynchronously. In other words, the data transfer is executed in the
background. We will first go over the convenience API and use it to implement the Discover
tab. After that, we will discuss the operational API.

As its name suggests, the convenience API allows you interact with iCloud with just a few lines
of code. In general, you just need the following code to fetch the Restaurant records from the
cloud:

Fetching Data from a Public Database Using Convenience
API

464

let cloudContainer = CKContainer.default()
let publicDatabase = cloudContainer.publicCloudDatabase
let predicate = NSPredicate(value: true)
let query = CKQuery(recordType: "Restaurant", predicate: predicate)
publicDatabase.perform(query, inZoneWith: nil, completionHandler: {
 (results, error) -> Void in

// Process the records

})

The above code is fairly straightforward. We first get the default CloudKit container of the app,
followed by obtaining the default public database. To retrieve the Restaurant records from the
public database, we construct a CKQuery object with the Restaurant record type and the
search criteria (i.e. predicate).

Predicate may be new to you. The iOS SDK provides a foundation class called NSPredicate for
developers to specify how data should be filtered. If you have some database background, you
may think of it as the WHERE clause in SQL. You can't perform a CKQuery without a predicate.
Even if you want to query the records without any filtering, you still need to specify a predicate.
In this case, we initialize a predicate that always evaluates to true . This means we do not
perform any sorting on the query result.

Lastly, we call the performQuery method of CKDatabase with the query. CloudKit then searches
and returns the results as an array of CKRecord . The search and data transfer are executed in
the background. When the records are ready, it will invoke the complete hander for further
processing.

Simple, right? Now let's go back to our FoodPin project and implement the Discover tab.

First, create a DiscoverTableViewController class for the table view controller. In the project
navigator, right-click the FoodPin folder and select New Files... . Name the class
 DiscoverTableViewController and set it as a subclass of UITableViewController .

Once created, go to discover.storyboard . Select the table view controller of the Discover tab
and set its custom class to DiscoverTableViewController in the Identity inspector. For the
prototype cell, just use the default style and set the identifier to Cell .

465

Figure 24-9. Set the custom class for the table view controller

Now you are ready to implement DiscoverTableViewController to fetch records from the cloud.
To use CloudKit, you have to first import the CloudKit framework. Insert the following line of
code at the very beginning of DiscoverTableViewController.swift :

import CloudKit

Next, declare a restaurants variable that stores an array of CKRecord objects. Initially the array
is empty. Later we use it to store the records fetched from the cloud.

var restaurants:[CKRecord] = []

When the Discover tab is loaded, the app will start to fetch the records via CloudKit. In the
 viewDidLoad method, insert the following line of code:

fetchRecordsFromCloud()

Next, insert the fetchRecordsFromCloud method in the DiscoverTableViewController class:

func fetchRecordsFromCloud() {

 // Fetch data using Convenience API
 let cloudContainer = CKContainer.default()
 let publicDatabase = cloudContainer.publicCloudDatabase
 let predicate = NSPredicate(value: true)
 let query = CKQuery(recordType: "Restaurant", predicate: predicate)
 publicDatabase.perform(query, inZoneWith: nil, completionHandler: {
 (results, error) -> Void in

 if error != nil {

466

 print(error)
 return
 }

 if let results = results {
 print("Completed the download of Restaurant data")
 self.restaurants = results
 self.tableView.reloadData()
 }
 })
}

The block of code is nearly the same as the one we discussed before. In the complete handler,
we check if there is any errors. If there is no error, we then get the results array and save it to
the restaurants array. Finally, we reload the table view with the updated restaurants.

Now that you've obtained the records, the next step is to implement the required methods of
the UITableViewDataSource protocol to display the record in the table view. Add/update the
following methods in the class:

override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
 return restaurants.count
}

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for:
indexPath)

 // Configure the cell...
 let restaurant = restaurants[indexPath.row]
 cell.textLabel?.text = restaurant.object(forKey: "name") as? String

 if let image = restaurant.object(forKey: "image") {
 let imageAsset = image as! CKAsset

 if let imageData = try? Data.init(contentsOf: imageAsset.fileURL) {
 cell.imageView?.image = UIImage(data: imageData)
 }
 }

467

 return cell
}

These methods should be very familar to you. Let's focus on the last method. Note that the
 restaurants variable contains an array of CKRecord objects. As mentioned before, a CKRecord
object is a dictionary of key-value pairs that you use to fetch and save the data of your app. It
provides the object(forKey:) method to retrieve the value of a record field (e.g. name field of
the Restaurant). When creating the Restaurant record type in the CloudKit dashboard, we use
 Asset as the type of the image field. Thus, the object returned is a CKAsset object.

When downloading a record containing an asset, CloudKit saves the asset data in the local file
system and you can retrieve the asset data with the URL in the fileURL property. So we can
load the image by accessing the fileURL property of the image asset.

if let imageData = try? Data.init(contentsOf: imageAsset.fileURL) {
 cell.imageView?.image = UIImage(data: imageData)
}

We discussed how to load an image with binary data. But what is the try? keyword? When
you initialize a Data with the file URL, Data may fail to load the file and throws you an error.
You can create a do-catch statement to handle the error. But in the above code we use try?
instead. In this case, if an error is thrown, the method returns an optional without a value. If
the image file is successfully loaded, the data is bind to the imageData variable. try? is
particularly useful if you do not care about the error message.

That's it. Before testing the app in the simulator, you have to configure the iCloud setting.
Otherwise, you can't fetch the data from iCloud. In the Simulator, click command-shift-H to go
back to Home screen. Select Setting > iCloud and sign in with your Apple ID. Now you're ready
to run the app. Select the Discover tab and the app should be able to fetch the restaurants
through CloudKit. It may take over 10 seconds before the restaurants are displayed. I will
explain why it takes so long to download the records in the next section. Meanwhile, just be
patient. Figure 24-10 shows a sample screenshot of the Discover tab.

468

Figure 24-10. Set the custom class for the table view controller

Note: Occasionally you may end up with an error in the console. In this case,
click the Stop button to quit the app and launch it again.

Why did it take so long to load the restaurants from iCloud? Was it a network issue? Or was it
due to the size of images?

Let's look into the issue together. If you look into the code block of the fetchRecordsFromCloud
method, we print a message Completed the download of Restaurant data to the console when
the query completes. Try to run your app again and take a closer look at the console.

Why So Slow?

469

Figure 24-11. Console message after the query completes

It only takes a couple of seconds and the message appears in the console. In other words, it
doesn't take long to fetch the restaurant records. Thus, the root cause of the slow response is
not related to network performance. But why does it take 10-20 seconds before the records
show up? It looks like there is something wrong with the display of table cells. Let's look at the
 perform(_:inZoneWith:completionHandler:) method call again.

publicDatabase.perform(query, inZoneWith: nil, completionHandler: {
 (results, error) -> Void in

 if error != nil {
 print(error)
 return
 }

 if let results = results {
 print("Completed the download of Restaurant data")

470

 self.restaurants = results
 self.tableView.reloadData()
 }
})

Once we get the restaurants from iCloud, we call the reloadData method to reload the table
view. For some reasons, it seems the reload is not performed immediately.

As mentioned before, all queries in CloudKit are asynchronous. CloudKit automatically
executes the query in background. In fact, the completion handler is executed in a background
thread as well.

If you're new to programming, you may not be familiar with the term thread. However, you
should be very familiar with this situation:

You need to do your homework,
but you also want to watch TV,
and check your Facebook, Twitter, etc.

You're doing multiple tasks at the same time. You spend a little bit of time on your homework
and then a little bit of time on TV, and then give some attention to your Facebook feed.

In computing, the same situation happens all the time. An app always needs to handle multiple
tasks in parallel. Say, it needs to update the user interface while waiting for user input or
downloading file from the Internet. For each of these tasks, the app spawns a thread to handle
it. iOS allocates a little time on each thread and switches between them. The time allocated for
each thread varies depending on its priority. The one with higher priority usually executes first
and iOS may spend more time on it.

Now that you've got some background knowledge of thread, let's go back to our code. CloudKit
creates a background thread for the search query and we also reload the table view in this
background thread.

In iOS, UI updates like table reload should be executed in the main thread. The main thread is
given with a higher priority to ensure a responsive UI. If we execute a UI-related update in a
background thread, the UI change will not be executed immediately; this is why it takes so long
before the downloaded records appear on screen.

471

So how can you fix the issue and improve the performance?

It's a simple fix. You just need to put the table reload in the main thread. In Swift, you can use
 OperationQueue.main to get the operation queue of the main thread, and then add your task in
the code block like below. The code block will be executed in the main thread.

OperationQueue.main.addOperation {
 self.tableView.reloadData()
}

Change the code accordingly, and test the app again. The app now shows the restaurant
records as soon as the data download completes. For reference, you can download the
complete Xcode project from http://www.appcoda.com/resources/swift3/FoodPinCloudKit-
1.zip. Make sure you change the bundle identifier to your own ID before compiling the project.

The convenience API is good for simple query. However, it does have some limitations. The
 perform(_:inZoneWith:completionHandler:) method is only suitable for retrieving a small
amount of data. If you have a few hundred records (or even more), the convenience API may
not fit. You also can't do additional tweaking with the convenience API. When you call the
 perform method, it retrieves all restaurant records. For each record, it downloads the whole
records including the image and every other fields. However, as you may notice, the app just
displays the restaurant names and the images. We can actually leave out those fields like phone
number, type and location to save some bandwidth.

So how can you tell CloudKit to merely retrieve the name field of all restaurant records? You
can't do that via the convenience API. In this case, you'll need to explore the operational API.

The usage of operational API is similar to that of the convenience API but it offers more
flexibility. Let's jump right into the code. Replace the fetchRecordsFromCloud method with the
following code snippet:

func fetchRecordsFromCloud() {

 // Fetch data using Convenience API

Fetching Data from Public Database Using Operational
API

472

http://www.appcoda.com/resources/swift3/FoodPinCloudKit-1.zip

 let cloudContainer = CKContainer.default()
 let publicDatabase = cloudContainer.publicCloudDatabase
 let predicate = NSPredicate(value: true)
 let query = CKQuery(recordType: "Restaurant", predicate: predicate)

 // Create the query operation with the query
 let queryOperation = CKQueryOperation(query: query)
 queryOperation.desiredKeys = ["name", "image"]
 queryOperation.queuePriority = .veryHigh
 queryOperation.resultsLimit = 50
 queryOperation.recordFetchedBlock = { (record) -> Void in
 self.restaurants.append(record)
 }

 queryOperation.queryCompletionBlock = { (cursor, error) -> Void in
 if let error = error {
 print("Failed to get data from iCloud - \
(error.localizedDescription)")
 return
 }

 print("Successfully retrieve the data from iCloud")
 OperationQueue.main.addOperation {
 self.tableView.reloadData()
 }
 }

 // Execute the query
 publicDatabase.add(queryOperation)

}

The first few lines of code are exactly as before. We get the default container and the public
database, followed by creating the query for retrieving the restaurant records.

Instead of calling the perform method to fetch the records, we create a CKQueryOperation
object for the query. This is why Apple called it operational API. The query operation object
provides several options for your configuration. The desiredKeys property lets you specify the
fields to fetch. You use this property to retrieve only those fields that you need for the app. In
the above code, we tell the query operation object that we only need the name and image fields
of the records.

Other than the desiredKeys property, you can use the queuePriority property to specify the
execution priority of the operation and resultsLimit property to set the maximum number of

473

records at any one time.

The operation object will be executed in the background. It reports the status of the query
operation through two callbacks. One is recordFetchedBlock and the other is
 queryCompletionBlock . The block of code within recordFetchedBlock will be executed every
time a record returned. In the code snippet, we simply append each of the returned records to
the restaurants array.

On the other hand, queryCompletionBlock allows you to specify the code block that executes
after all records are fetched. In this case, we ask the table view to reload and display the
restaurant records.

The queryCompleteBlock provides a cursor object to indicate if there are more
results to fetch. Recalled that we use the resultsLimit property to control the
number of the fetched records, the app may not be able to fetch all data in a
single query. In this case, a CKQueryCursor object indicates there are more
results to fetch. Additionally, it marks the stopping point of the query and
the starting point for retrieving the remaining results. For example, let's say
you have a total of 100 restaurant records. For each search query, you can get
a maximum of 50 records. After the first query, the cursor would indicate that
you have fetched record 1 to 50. For your next query, you should start from the
51st record. The cursor is very useful if you need to get your data in multiple
batches.

Lastly, we call the add method of the CKDatabase class to execute the query operation. You
can now compile and run the app again. The result should be the same as before. Internally,
however, you have built a custom query to fetch only those data you need.

Up until now, both approaches achieve the same performance. It is not too slow as the size of
data set is relatively small. However, as your data set grows, it will take even longer to
download and display the records to users. Performance is critical in mobile app development.
Your users expect your app to be fast and responsive. A sluggish performance of an app may
mean losing a customer. So how can we improve the performance?

More about queryCompletionBlock

Optimizing the Performance

474

Optimizing the server performance? No, that's out of our control. We can only focus on the
things that we can optimize.

Reducing the size of the images? This is a good suggestion. You can further optimize the
images to achieve a faster download. But from a user point of view, the improvement would
not be very significant as the sizes of original images were moderately optimized.

Tip: tinypng.com is a great website for image optimization.

When we talk about performance optimization, sometimes we're not talking about optimizing
the real performance but rather perceived performance. Perceived performance refers to how
fast your user thinks your app is. Let me give you an example. Say, after a user taps the
Discover tab, it takes 10 seconds to load the restaurant records. You then optimize the image
sizes and reduce the loading time to 6 seconds. The real performance is improved by 40%. You
think that's a huge improvement. But the perceived performance is still sluggish. To the user,
your app is slow because it can't respond instantaneously. When it comes to performance
optimization, sometimes the technical statistics do not matter. Rather, it's about optimizing
the perceived performance to make users feel that your app is speedy.

One way to improve the perceived performance is to make your app responsive. Currently,
when a user selects the Discover tab, nothing shows up. The user expects an instantaneous
response. This doesn't mean you have to show the remote content immediately. However, your
app should at least display something even it's waiting for the data. Adding an animated
spinner or an activity indicator will do the trick. The spinner gives a real-time feedback and
tells the user that something is happening. Research has also shown that the feeling of waiting
can be reduced by keeping a user's attention occupied.

Activity Indicator

475

The UIKit framework provides a class called UIActivityIndicatorView for showing a spinner to
indicate a task is in progress. This is a sample code snippet to create an activty indicator:

let spinner:UIActivityIndicatorView = UIActivityIndicatorView()
spinner.activityIndicatorViewStyle = .gray
spinner.center = view.center
spinner.hidesWhenStopped = true
view.addSubview(spinner)
spinner.startAnimating()

You can put the above code in the viewDidLoad method to create the activity indicator. But let's
use storyboards to add the indicator. At the same time, I can demonstrate you a new feature of
Storyboards in Xcode known as Extra Views.

Go to discover.storyboard and drag an Activity Indicator View object to the scene dock of the
table view controller.

Figure 24-13. Adding an activity indicator view in the storyboard

Once you added the view, it appears as an extra view in the scene dock, and it shows up in its

476

own editor above the view controller. The Extra Views feature allows you to put a view
alongside a view controller if you don't want that view to initially be a part of the view
hierarchy.

Figure 24-14. The activity indicator view has its own editor

Now add an outlet variable in the DiscoverTableViewController class:

@IBOutlet var spinner: UIActivityIndicatorView!

Go back to discover.storyboard . You can establish a connection between the outlet and the
activity indicator view like before. To display the indicator, all you need to do is insert the
following code in the viewDidLoad method of the DiscoverTableViewController class:

spinner.hidesWhenStopped = true
spinner.center = view.center
tableView.addSubview(spinner)
spinner.startAnimating()

When the spinner is first initialized, its position is set to the top-left of a view. Here we use the
 center property to place the indicator at the center of the view. The hidesWhenStopped
property controls whether the indication is hidden when the animation is stopped. Once the
indicator is configured, you can add it to the current view and call the startAnimating method
to start the animation.

That's it! If you run the app, the activity indicator will appear when you select the Discovery
tab. However, it doesn't hide itself even when the restaurant records are fully loaded.

477

The indicator has no idea when it should be hidden. When the data download completes, you
have to explicity call the stopAnimating method to stop the animation, right before reloading
the table view. Because the hidesWhenStopped property is set to true, the activity indicator will
then be hidden automatically.

OperationQueue.main.addOperation {
 self.spinner.stopAnimating()
 self.tableView.reloadData()
}

Cool! The spinner made the app more responsive. Are there any other ways to optimize the
performance? Let's take a look at how we fetch the data from iCloud. Currently the app
displays the records on screen only when all restaurant records are downloaded completely.
This includes the image download. Obviously this download operation is one of the
bottlenecks. It takes time to download all images. Wouldn't it be great if we can retrieve the
restaurant names and display them in the table view first? The size of the restaurant names is
significantly smaller than the size of the images. It will take a fraction of the total time to
download the data.

This sounds great! But what about the images? We will employ a well-known technique called
lazy loading. Simply put, we defer the download of the images. At first, we just display a local
image, bundled in the app, in the table view cell. Then we start another thread in background
to download the remote images. When the image is ready, the app updates the cell's image
view. Figure 24-15 illustrates the lazy loading technique.

Lazy Loading Images

478

Figure 24-15. The lazy loading technique illustrated

With lazy loading in place, your user will be able to view the restaurant data almost instantly.
Though the images are not ready when the data is first loaded, it improves the responsiveness
of your app.

Let's see how we can implement it in the app. Because we defer the image download, we have
to update the desireKeys property of the query operation in the fetchRecordsFromCloud
method like this.

From:

queryOperation.desiredKeys = ["name", "image"]

To:

queryOperation.desiredKeys = ["name"]

Now we only retrieve the restaurant names and leave out the images. In the
 tableView(_:cellForRowAt:) method, we modify two things to implement lazy loading:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for:

479

indexPath)

 // Configure the cell...
 let restaurant = restaurants[indexPath.row]
 cell.textLabel?.text = restaurant.object(forKey: "name") as? String

 // Set the default image
 cell.imageView?.image = UIImage(named: "photoalbum")

 // Fetch Image from Cloud in background
 let publicDatabase = CKContainer.default().publicCloudDatabase
 let fetchRecordsImageOperation = CKFetchRecordsOperation(recordIDs:
[restaurant.recordID])
 fetchRecordsImageOperation.desiredKeys = ["image"]
 fetchRecordsImageOperation.queuePriority = .veryHigh

 fetchRecordsImageOperation.perRecordCompletionBlock = { (record, recordID,
error) -> Void in
 if let error = error {
 print("Failed to get restaurant image: \
(error.localizedDescription)")
 return
 }

 if let restaurantRecord = record {
 OperationQueue.main.addOperation() {
 if let image = restaurantRecord.object(forKey: "image") {
 let imageAsset = image as! CKAsset

 if let imageData = try? Data.init(contentsOf:
imageAsset.fileURL) {
 cell.imageView?.image = UIImage(data: imageData)
 }
 }
 }
 }
 }

 publicDatabase.add(fetchRecordsImageOperation)

 return cell
}

First, we set a default image (photoalbum.png) for each cell. As this image is bundled in the
app, it can be displayed instantly when the Discover tab is loaded. Secondly, we spawn a
background thread to download the image asynchronously. Once the image is retrieved, the
default image will be replaced by the image just downloaded.

480

The code is very similar to that of the fetchRecordsFromCloud method except that we use
 CKFetchRecordsOperation to fetch a specific record. Every record on the cloud has its own ID.
To fetch the image of a specific restaurant record, we create a CKFetchRecordsOperation object
with the ID of that particular restaurant record. Similar to CKQueryOperation , you can assign a
code block (perRecordCompletionBlock) to execute when the record is available. In the code
block, we just load the downloaded image in the cell's image view.

After the modification, you can test the app again. You'll see a great improvement in
performance as the restaurant records should appear with a little (or even no) delay. The
thumbnails of the restaurants will get loaded in background. Figure 24-16 shows a sample
screenshot.

Figure 24-16. Lazy loading image in action

Caching Images Using NSCache

481

Every time a table view cell goes off the screen (as you scroll up/down the table), the cell is
removed from view. Whenever the same cell comes back on screen, it goes up to the cloud and
re-downloads the restaurant image. This is inefficient and wastes Wi-Fi/cellular data on
duplicated downloads. Why don't we cache the image for later reuse?

Caching is one of the common approaches to improve app performance. iOS SDK provides an
 NSCache class for developers to implement simple caching. NSCache behaves like a dictionary
and caches data in key-value pairs. You use setObject(_:forKey:) method to add an object to
the cache using a specific key. To obtain an object of a given key from the cache, you use
 object(forKey:) method. That's much the same as accessing items in a dictionary.

However, unlike a dictionary, it incorporates various auto-removal policies to clean up the
cached objects. This ensures that it does not use too much of the system's memory.

So what do we need to do to cache the restaurant objects?

As mentioned earlier, CloudKit automatically downloads the images and saves them in the
local file system. The images are then temporarily available for offline reading. You use the
 fileURL property of the CKAsset class to retrieve the image's location. Thus, what we need to
cache are the file URLs of the images.

To implement caching in the Discover tab, we'll make the following modifications:

If the image is downloaded for the first time, we cache its file URL using NSCache with the
record ID as key.
When a table view cell loads an image, we first check if the image's file URL is stored in
the cache. If yes, we get the URL from the cache and load it directly. Otherwise, we'll
retrieve it from iCloud.

To create a cache object using NSCache , insert the following line of code in the
 DiscoverTableViewController class:

var imageCache = NSCache<CKRecordID, NSURL>()

In Swift 3, NSCache is a generic. When initializing it, you have to provide the type of the key
and value pair in angle bracket. In this case, the key is of type CKRecordID and the value is of

482

type NSURL .

In order to handle the image caching, we need to add a conditional block to check if the image's
URL is available in the cache in the tableView(_:cellForRowAt:) method. Update the method
like this:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell", for:
indexPath)

 // Configure the cell...
 let restaurant = restaurants[indexPath.row]
 cell.textLabel?.text = restaurant.object(forKey: "name") as? String

 // Set the default image
 cell.imageView?.image = UIImage(named: "photoalbum")

 // Check if the image is stored in cache
 if let imageFileURL = imageCache.object(forKey: restaurant.recordID) {
 // Fetch image from cache
 print("Get image from cache")
 if let imageData = try? Data.init(contentsOf: imageFileURL as URL) {
 cell.imageView?.image = UIImage(data: imageData)
 }

 } else {
 // Fetch Image from Cloud in background
 let publicDatabase = CKContainer.default().publicCloudDatabase
 let fetchRecordsImageOperation = CKFetchRecordsOperation(recordIDs:
[restaurant.recordID])
 fetchRecordsImageOperation.desiredKeys = ["image"]
 fetchRecordsImageOperation.queuePriority = .veryHigh

 fetchRecordsImageOperation.perRecordCompletionBlock = { (record,
recordID, error) -> Void in
 if let error = error {
 print("Failed to get restaurant image: \
(error.localizedDescription)")
 return
 }

 if let restaurantRecord = record {
 OperationQueue.main.addOperation() {
 if let image = restaurantRecord.object(forKey: "image") {
 let imageAsset = image as! CKAsset

483

 if let imageData = try? Data.init(contentsOf:
imageAsset.fileURL) {
 cell.imageView?.image = UIImage(data: imageData)
 }

 // Add the image URL to cache
 self.imageCache.setObject(imageAsset.fileURL as NSURL,
forKey: restaurant.recordID)
 }
 }
 }
 }

 publicDatabase.add(fetchRecordsImageOperation)
 }

 return cell
}

Basically we have made a couple of changes:

1. If the URL can be found in the cache, we simply get the URL and load it right away.
2. For images that are downloaded for the first time, we need to cache the image's URL.

Therefore, we add a line of code to call setObject of the image cache. We use the record
ID of the restaurant record as key and add the URL to the cache.

That's it. If you run the app and scroll through the records in the Discover tab, the images
should be loaded from the cache if it is available. You will see the message "Get image from
cache" in the console.

After all the tweaks, the Discover tab should be working much better. However, there is a
limitation. Once the restaurant records are loaded, there is no way to get an update.

Most modern iOS apps allow users to refresh their content through a feature called pull-to-
refresh. The pull-to-refresh interaction for updating data of a table view was originally created
by Loren Brichter. Since its invention, an endless number of apps, including Apple's Mail app,
have adopted the design for content updates.

Prior to iOS 6, adding such a feature to your app was not an easy task. You either implemented

Pull to Refresh

484

your own solution or relied on third-party libraries. Both solutions took you considerable time
and effort.

Thanks to the popularity of the pull-to-refresh feature. Apple have made a standard pull-to-
refresh control in the iOS SDK. With the built-in control, it is very simple to add the pull-to-
refresh feature to your app.

 UIRefreshControl is a standard control for implementing the pull-to-refresh feature. You can
simply associate a refresh control with a table view controller, which will automatically add the
control to the table view. Let's see how it works.

In the DiscoverTableViewController class, insert the following lines of code in the viewDidLoad
method:

// Pull To Refresh Control
refreshControl = UIRefreshControl()
refreshControl?.backgroundColor = UIColor.white
refreshControl?.tintColor = UIColor.gray
refreshControl?.addTarget(self, action: #selector(fetchRecordsFromCloud), for:
UIControlEvents.valueChanged)

 UIRefreshControl is very simple to use. You can instantiate it and assign it to the table view
controller's refreshControl property. That's it. The table view controller handles the task of
adding the control to the table's visual appearance. Similar to other view objects, you can
configure the background color and tint color using the backgroundColor and tintColor
properties.

The refresh control doesn't initiate the refresh operation when it is first created. Instead, when
the table view is pulled down sufficiently, the refresh control triggers the
 UIControlEvent.valueChanged event. We have to assign an action method to this event and use
it to fetch the restaurant records. To capture the event and specify the follow-up action, you
can use the addTarget method of the refresh control object to register the
 UIControlEvent.valueChanged event. In the method call, you specify the target object (i.e. self)
and the action method (i.e. fetchRecordsFromCloud) to handle the event. When the event is
triggered, the refresh control will invoke the fetchRecordsFromCloud method to refresh the
restaurant records.

Note: Starting from Swift 2.2 (or Xcode 7.3), Apple introduces a new expression

485

`#selector` that allows developers to build a selector from a reference to a
method.

If you compile and run the app, the pull-to-refresh feature should work. Try to pull down the
table until it triggers the refresh. If you've added new restaurants using CloudKit dashboard,
the table should show the update. However, there's still a problem; the refresh control appears
even after the table content is loaded.

Figure 24-17. Pull to Refresh

So how can we hide the refresh control? When the data is ready, you can simply call the
 endRefreshing method to hide the control. Apparently, we can update queryCompletionBlock
in the fetchRecordsFromCloud method by adding adding a few lines of code:

if let refreshControl = self.refreshControl {
 if refreshControl.isRefreshing {
 refreshControl.endRefreshing()
 }
}

You can place the code after self.tableView.reloadData() . Here we check if the refresh control
is still refreshing. If yes, we call endRefreshing() to end the animation and hide the control.

Now run the app again. The pull-to-refresh control should disappear when the data transfer

486

completes.

Currently, there is a bug when you refresh the data from cloud. Some of the records are
duplicated because the existing records are not removed before loading the new ones. To fix it,
insert the following lines of code at the beginning of the fetchRecordsFromCloud method:

// Remove existing records before refreshing
restaurants.removeAll()
tableView.reloadData()

We're now going to discuss a new topic but make sure you understand the material covered so
far. For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinCloudKit-2.zip.

Now that we have discussed data query, let's further explore the CloudKit framework and see
how you can save data to the cloud. It all comes down to this convenience API provided by the
 CKDatabase class:

func save(_ record: CKRecord, completionHandler: @escaping (CKRecord?, Error?)
-> Void)

The save(_:completionHandler:) method takes in a CKRecord object and uploads it to iCloud.
When the operation completes, it reports the status by calling the completion handler. You can
examine the error and see if the record is saved successfully.

To demonstrate the usage of the API, we'll tweak the Add Restaurant function of the FoodPin
app. When a user adds a new restaurant, in addition to saving it to the local database, the
record will also be uploaded to iCloud.

I'll go straight into the code and walk you through the logic along the way. In the
 AddTableViewController class, import CloudKit:

import CloudKit

and add the following method:

Saving Data Using CloudKit

487

http://www.appcoda.com/resources/swift3/FoodPinCloudKit-2.zip

func saveRecordToCloud(restaurant:RestaurantMO!) -> Void {

 // Prepare the record to save
 let record = CKRecord(recordType: "Restaurant")
 record.setValue(restaurant.name, forKey: "name")
 record.setValue(restaurant.type, forKey: "type")
 record.setValue(restaurant.location, forKey: "location")
 record.setValue(restaurant.phone, forKey: "phone")

 let imageData = restaurant.image as! Data

 // Resize the image
 let originalImage = UIImage(data: imageData)!
 let scalingFactor = (originalImage.size.width > 1024) ? 1024 /
originalImage.size.width : 1.0
 let scaledImage = UIImage(data: imageData, scale: scalingFactor)!

 // Write the image to local file for temporary use
 let imageFilePath = NSTemporaryDirectory() + restaurant.name!
 let imageFileURL = URL(fileURLWithPath: imageFilePath)
 try? UIImageJPEGRepresentation(scaledImage, 0.8)?.write(to: imageFileURL)

 // Create image asset for upload
 let imageAsset = CKAsset(fileURL: imageFileURL)
 record.setValue(imageAsset, forKey: "image")

 // Get the Public iCloud Database
 let publicDatabase = CKContainer.default().publicCloudDatabase

 // Save the record to iCloud
 publicDatabase.save(record, completionHandler: { (record, error) -> Void
in
 // Remove temp file
 try? FileManager.default.removeItem(at: imageFileURL)
 })

}

The saveRecordToCloud method takes in a Restaurant object, which is the object to save. We
first transform the Restaurant object to a CKRecord object by instantiating a CKRecord of the
 Restaurant record type and setting its name, type and location values.

The restaurant image requires a bit of work. First, we don't want to upload a super-high
resolution photo. We would like to scale it down before uploading. The UIImage class allows us
to create an object with a certain scaling factor. In this case, any photo with width larger than
1024 pixels will be resized.

488

As you know, you use CKAsset object to represent an image on the cloud. To create the
 CKAsset object, we have to provide the file URL of the scaled image. So we save the image in
the temporary folder. You can use the NSTemporaryDirectory function to get the path of the
temporary directory. By combining the path with the restaurant name, we have the temporary
file path of the image. We then use UIImageJPEGRepresentation function to compress the image
data and call the write method to save the compressed image data as a file.

With the scaled image ready for upload, we can create the CKAsset object using the file URL.
Lastly, we get the default public database and save the record to the cloud using the save
method of CKDatabase . In the complete handler, we clean up the temporary file just created.

The saveRecordToCloud method is now ready. As the app uploads the restaurant record
whenever a user saves a new restaurant, we will call the method in the save method of the
 AddTableViewController class. Simply insert the following line of code in the save method and
place it right before dismiss(animated:completion:) :

saveRecordToCloud(restaurant)

You're ready to go! Hit the Run button and test the app. Click the + button to add a new
restaurant. Once you save the restaurant, go to the Discover tab and you should find the new
restaurant there. If it doesn't appear, wait for a few seconds and pull-to-refresh the table again.
Alternatively, you can go up to CloudKit Dashboard to reveal the new record.

One problem of the Discover feature is that the restaurants are not in any order. As a user, you
may want to view the new restaurants shared by other app users. That means, we need to
arrange the results in reverse chronlogical order.

Sorting has been built into the CKQuery class. Here is the code snippet of the
 fetchRecordsFromCloud method in DiscoverTableViewController :

// Prepare the query
let predicate = NSPredicate(value: true)
let query = CKQuery(recordType: "Restaurant", predicate: predicate)

The CKQuery class provides a property named sortDescriptor . Earlier, we didn't set the sort

Sorting the Result by Creation Date

489

descriptor. In this case, CloudKit simply returns an unordered collection of restaurant records.
To request CloudKit to sort the records in reverse chronological order, you need to insert a line
of code:

query.sortDescriptors = [NSSortDescriptor(key: "creationDate", ascending:
false)]

This creates an NSSortDescriptor object using the creationDate key and set the order to
descending. When CloudKit performs the search query, it will order the results by creation
date. You can run now the app again and add a new restaurant. Once saved, go to the Discover
tab and the restaurant just added should appear first.

Presently, the cell in the Discover tab only displays the name and thumbnail of a restaurant.
Modify the project so that the cell shows the restaurant's location and type. Figure 24-18
displays a sample screenshot.

Your Exercise

490

Figure 24-18. A modified Discover tab

Note: This exercise is designed to refresh your knowledge of table cell
customization and self sizing cells.

Wow! You've made a social network app for sharing restaurants. This is a huge chapter; by now
you should understand the basics of CloudKit. The introduction of CloudKit could change the
landscape of cloud providers. Apple has made it so easy for iOS developers to integrate their
apps with iCloud. The service is completely free. With the release of CloudKit JS, you are able
to build a web app for users to access the same containers as your iOS app. This is a huge deal
for developers.

That said, CloudKit isn't perfect. CloudKit is an Apple product. I don't see any possibilities that
the company would open up the service to other platforms. If you want to create a cloud-based
app for both iOS and Android, CloudKit may not be your first choice. You may want to explore
Google's Firebase, Parse server, Microsoft's Azure, Kinvey, or BassBox. If your primary focus is
on iOS platform, CloudKit holds a lot of potential for both you and your users. I encourage you
to adopt CloudKit in your next app.

For your reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinCloudKit.zip.

For the solution to the exercise, you can download the project from
http://www.appcoda.com/resources/swift3/FoodPinCloudKitExercise.zip.

Summary

491

http://www.appcoda.com/resources/swift3/FoodPinCloudKit.zip
http://www.appcoda.com/resources/swift3/FoodPinCloudKitExercise.zip

Good code is its own best documentation. As you're about to add a comment, ask
yourself, "How can I improve the code so that this comment isn't needed?" Improve the
code and then document it to make it even clearer.

- Steve McConnell

Chapter 25
Localizing Your App to Reach More
Users

492

In this chapter, let's talk about localization. The iOS devices including iPhone and iPad are
available globally. The App Store is available in 150 countries around the world. Your users are
from different countries and speak different languages. To deliver a great user experience and
reach a global audience, you would want to make your app available in multiple languages. The
process of adapting an app to support a particular language is usually known as localization.

Xcode has the built-in support for localization. It's fairly easy for developers to localize an app
through the localization feature and a few API calls.

You may have heard of localization and internationalization. You may think that both terms
refer to the process of translation; that's partially correct. In iOS development,
internationalization is considered a milestone of building a localized app. Before your app can
be adapted to different languages, you design and structure the app to be language and region
independent. This process is known as internationalization. For instance, your app displays a
price field. As you may know, some countries use a dot to indicate decimal place (e.g.
$1000.50), while many other countries use a comma instead (e.g. $1000,50). The
internationalization process involves designing the price field so that it can be adapted to
different regions.

Localization is the process of adapting an internationalized app for different languages and
regions. This involves translating static and visible text to a specific language and adding
country-specific elements such as images, videos and sounds.

In this chapter, we'll localize the FoodPin app into Chinese and German. However, don't expect
me to translate all the text in the app - I just want to show you the overall process of
localization using Xcode.

The first step of building a localized app is internationalization. In this section, we will modify
the app so that it can be easily adapted to various languages.

First, let's talk about the user-facing text of the app. There is tons of user-facing text in the
source code. For convenience, we simply specify the strings in the source code. Figure 25-1
displays a few user-facing text in the RestaurantTableViewController class. When it comes to

Internationalizing Your App

493

localization, these hardcoded strings are not localizable. We have to internationalize them first.

Figure 25-1. Sample user-facing text

At the heart of string internationalization is the NSLocalizedString macro. The macro allows
you to internationalize the user-facing strings with ease. It has two arguments:

 key - the string to be localized
 comment - the string that is used to provide additional information for translation.

The macro returns a localized version of String. To internationalize the user-facing strings in
your app, one thing that you need to do is wrap the existing strings with NSLocalizedString .
Let's do some code changes so you can fully understand the macro. Take a look at the below
code snippet from the RestaurantDetailViewController class:

switch indexPath.row {
case 0:
 cell.fieldLabel.text = "Name"

494

 cell.valueLabel.text = restaurant.name
case 1:
 cell.fieldLabel.text = "Type"
 cell.valueLabel.text = restaurant.type
case 2:
 cell.fieldLabel.text = "Location"
 cell.valueLabel.text = restaurant.location
case 3:
 cell.fieldLabel.text = "Phone"
 cell.valueLabel.text = restaurant.phone
case 4:
 cell.fieldLabel.text = "Been here"
 cell.valueLabel.text = (restaurant.isVisited) ? "Yes, I've been here
before. \(restaurant.rating!)" : "No"
default:
 cell.fieldLabel.text = ""
 cell.valueLabel.text = ""
}

All the field labels are displayed in English and are non-localizable. To make them language
independent, you need to wrap the strings with NSLocalizedString :

switch indexPath.row {
case 0:
 cell.fieldLabel.text = NSLocalizedString("Name", comment: "Name Field")
 cell.valueLabel.text = restaurant.name
case 1:
 cell.fieldLabel.text = NSLocalizedString("Type", comment: "Type Field")
 cell.valueLabel.text = restaurant.type
case 2:
 cell.fieldLabel.text = NSLocalizedString("Location", comment:
"Location/Address Field")
 cell.valueLabel.text = restaurant.location
case 3:
 cell.fieldLabel.text = NSLocalizedString("Phone", comment: "Phone Field")
 cell.valueLabel.text = restaurant.phone
case 4:
 cell.fieldLabel.text = NSLocalizedString("Been here", comment: "Have you
been here Field")
 cell.valueLabel.text = (restaurant.isVisited) ? NSLocalizedString("Yes,
I've been here before. \(restaurant.rating!)", comment: "Yes, I've been here
before") : NSLocalizedString("No", comment: "No, I haven't been here")
default:
 cell.fieldLabel.text = ""
 cell.valueLabel.text = ""
}

495

Xcode actually stores the localized strings in Localizable.strings files. Each language has its
own Localizable.strings file. Say, your user's device is using German as the default language,
 NSLocalizedString looks up the German version of the Localizable.strings file and returns the
string in German.

Tip: If you don't know how an app picks a language, it actually refers to the
language settings of iOS (General > International > Language). An app refers to
that setting and access the corresponding localized resources.

That's all we need to do to internationalize the user-facing strings. In the coming section, we
will discuss about how to create the Localizable.strings file, and show you how to localize those
labels in the storyboard.

Starting from version 6, Xcode comes with an export feature to streamline the translation
process. The export feature is intelligent enough to extract all localizable strings from your
source code and Interface Builder/Storyboard files. The extracted strings are stored in an
XLIFF file. If you haven't heard of the term, XLIFF stands for XML Localization Interchange
File, which is a well-known and globally-recognized file format for localization.

To use the export feature, select the FoodPin project in the project navigator. Then head up to
the Xcode menu and select Editor > Export For Localization. When prompted, choose a folder
to save the XLIFF file. Xcode then examines all your files and generates the XLIFF file.

If you open Finder and go to your selected folder, you should find the en.xliff file. Open it
with a text editor, you should find something like this in the file:

Export for Localization

496

 <trans-unit id="Been here">
 <source>Been here</source>
 <note>Have you been here Field</note>
 </trans-unit>
 <trans-unit id="Location">
 <source>Location</source>
 <note>Location/Address Field</note>
 </trans-unit>
 <trans-unit id="Name">
 <source>Name</source>
 <note>Name Field</note>
 </trans-unit>
 <trans-unit id="No">
 <source>No</source>
 <note>No, I haven't been here</note>
 </trans-unit>
 <trans-unit id="Phone">
 <source>Phone</source>
 <note>Phone Field</note>
 </trans-unit>
 <trans-unit id="Type">
 <source>Type</source>
 <note>Type Field</note>
 </trans-unit>
 <trans-unit id="Yes, I've been here before. (restaurant.rating!)">
 <source>Yes, I've been here before. (restaurant.rating!)</source>
 <note>Yes, I've been here before</note>
 </trans-unit>

Xcode has extracted the strings that we have just wrapped with the NSLocalizedString macro.
Other than the above, the file should have something like this:

<file original="FoodPin/Base.lproj/LaunchScreen.storyboard" source-
language="en" datatype="plaintext">
 <header>
 <tool tool-id="com.apple.dt.xcode" tool-name="Xcode" tool-version="8.0"
build-num="8S201h"/>
 </header>
 <body/>
 </file>
 <file original="FoodPin/Base.lproj/Main.storyboard" source-language="en"
datatype="plaintext">
 <header>
 <tool tool-id="com.apple.dt.xcode" tool-name="Xcode" tool-version="8.0"
build-num="8S201h"/>
 </header>
 <body>
 <trans-unit id="5Ik-ha-Kpq.normalTitle">

497

 <source>NEXT</source>
 <note>Class = "UIButton"; normalTitle = "NEXT"; ObjectID = "5Ik-ha-
Kpq";</note>
 </trans-unit>
 <trans-unit id="87e-VN-sYe.title">
 <source>New Restaurant</source>
 <note>Class = "UINavigationItem"; title = "New Restaurant"; ObjectID =
"87e-VN-sYe";</note>
 </trans-unit>
 <trans-unit id="BgK-EL-iP5.text">
 <source>LOCATION</source>
 <note>Class = "UILabel"; text = "LOCATION"; ObjectID = "BgK-EL-iP5";
</note>
 </trans-unit>

The export feature automatically examines the storyboard and extracts all the localizable
strings, including labels and button titles. Typically you pass the file to a professional
translator for translation. The translator then uses an XLIFF-enabled tool to add all the
missing translations. Or, like me, you can use Google Translate to do the translation and Xcode
editor to edit the file. You only need to translate the text enclosed by the tag. Content inside the
tag contains comments that we (or Xcode) added, so you do not need to translate them. The
translated text is placed inside the tag. Below is a part of the Traditional Chinese translation
file:

<file original="FoodPin/Base.lproj/Main.storyboard" source-language="en"
target-language="zh-Hant" datatype="plaintext">
 <header>
 <tool tool-id="com.apple.dt.xcode" tool-name="Xcode" tool-version="8.0"
build-num="8S201h"/>
 </header>
 <body>
 <trans-unit id="5Ik-ha-Kpq.normalTitle">
 <source>NEXT</source>
 <target> </target>
 <note>Class = "UIButton"; normalTitle = "NEXT"; ObjectID = "5Ik-ha-
Kpq";</note>
 </trans-unit>
 <trans-unit id="87e-VN-sYe.title">
 <source>New Restaurant</source>
 <target> </target>
 <note>Class = "UINavigationItem"; title = "New Restaurant"; ObjectID =
"87e-VN-sYe";</note>
 </trans-unit>
 <trans-unit id="BgK-EL-iP5.text">
 <source>LOCATION</source>

498

 <target> </target>
 <note>Class = "UILabel"; text = "LOCATION"; ObjectID = "BgK-EL-iP5";
</note>
 </trans-unit>
 <trans-unit id="BuA-j5-8a5.placeholder">
 <source>Restaurant Phone</source>
 <target> </target>
 <note>Class = "UITextField"; placeholder = "Restaurant Phone"; ObjectID
= "BuA-j5-8a5";</note>
 </trans-unit>
 <trans-unit id="DgX-l9-5vc.placeholder">
 <source>Restaurant Name</source>
 <target> </target>
 <note>Class = "UITextField"; placeholder = "Restaurant Name"; ObjectID
= "DgX-l9-5vc";</note>
 </trans-unit>

The first line of the XML code specifies the original file and the target language of the
translation. The target language specifies the language code of the translation. zh-Hant is the
language code of Chinese. For German, the language code is de .

Assuming your translator has completed the translations and passed you the translation files
(download them from http://www.appcoda.com/resources/swift3/translations.zip), you just
need a few clicks to import the translations.

Head up to the Editor menu and select Import Localizations. When prompted, select the
translation file (e.g. zh-Hant.xliff). Xcode then automatically compares the translation with the
existing files and shows you the differences (see figure 25-3).

Import Localizations

499

http://www.appcoda.com/resources/swift3/translations.zip

Figure 25-3. Import localizations

If you confirm the translation is correct, click Import button to import it right away. If you
have other translations (e.g. de.xliff), repeat the same procedures to add them. When finished,
Xcode displays the available localizations in the project screen. You should notice that Xcode
adds the localized resource files in the project navigator.

500

Figure 25-4. German and Chinese localizations added to the Xcode project

Before we move on to testing the localized app, let me give you some more information about
base internationalization and the localized resource files. In the project navigator, you should
find the Localizable.strings files. These files are automatically generated after the import
process. The localized strings in source code (i.e. those wrapped with NSLocalizedString) are
stored in a language-dependent Localizable.strings file. As we have imported the zh-Hant
and de translations, there are two versions of Localizable.strings files.

If you look into any of the Localizable.strings file (say, the Chinese version), you will find the
translation of the localizable strings. At the beginning of each entry, it is the comment you've
put in the source code. On the left side of the equal sign, it is the key you specify when using
 NSLocalizedString macro.

/* Have you been here Field */
"Been here" = " ";

/* Facebook */
"Facebook" = " ";

/* Follow Us */
"Follow Us" = " ";

/* Leave Feedback */
"Leave Feedback" = " ";

501

/* Locate */
"Locate" = " ";

/* Location/Address Field */
"Location" = " ";

Note: While you can edit the translations directly, I would recommend you to
use the export feature as I have just demonstrated.

The second thing I want to talk about is base internationalization. As you can see from figure
25-4, Main.storyboard is now split into three files: the base file, the Chinese translation file
and the German translation file. But what is Main.storyboard (Base) ?

The concept of base internationalization was first introduced in Xcode 4.5. Prior to Xcode 4.5,
there was no concept of base internationalization. Xcode replicates the whole set of
storyboards for each localization. For example, let's say if your app is localized into 5
languages. Xcode generates 5 sets of storyboards for localization purposes. There is a major
drawback of this design. When you need to add a new UI control in the storyboard, you'll need
to add the same element in each localized storyboard. This is a tedious process, which is why
Apple introduced base internationalization in Xcode 4.5.

With base internationalization, an Xcode project has only one set of storyboards that is set to
the default language. This storyboard is known as the base internationalization. Whenever the
storyboard is localized into another language, Xcode only generates a .strings file containing
all the text of the base storyboard. This efficiently separates the UI design from the
translations.

One way to test the localization is to change the language preference of the simulator and then
run the localized app on it. Alternatively, you can utilize a preview feature of Xcode that lets
you test your app in different languages and regions, both at runtime and in Interface Builder.
I will go through them with you one by one.

Xcode 8 supports preview at runtime. You can enable this feature by editing the scheme sheet
and set your preferred language in the dialog box.

Testing the Localized App

502

Figure 25-5. Edit scheme option

In the dialog box, select Options and change the application language to your preferred
language. For example, Chinese (Traditional). Click the Close button to save the setting.

Figure 25-6. Changing the application language to your preferred language

Now click the Run button to launch the app; the language of the simulator should set to your

503

preferred language. If you've set it to Chinese, your app should look like the screenshot shown
in figure 25-7.

Figure 25-7. FoodPin App in Traditional Chinese

Alternatively, Xcode allows you to preview the localized app UI in the preview assistant. To
launch the preview assistant, select Main.storyboard and click the button at the top-left corner
of the Interface builder. Scroll down to Preview (1) . Hold the option key and click
 Main.storyboard (Preview) .

504

Figure 25-8. Open the preview assistant

Xcode then opens the preview assistant. You can preview the localized UI by selecting the
language from the language pop-up at the lower right corner of the preview window.

Figure 25-9. Previewing your localized app UI using Preview Assistant

505

Other than text, you may want to localize resources such as images, videos and sounds. For
example, you can display a locale-specific image in the About tab. Figure 25-10 shows the
German and Chinese version of the image.

Figure 25-10. German (left) and Chinese (right) version of the image in About tab

From the very beginning, we used the asset catalog to manage the project's images.
Unfortunately, asset catalogs do not support localization. To localize an image in your app, one
way is to import the file directly into the project navigator.

To demonstrate how it works, first download this image pack from
http://www.appcoda.com/resources/swift3/aboutfoodpin.zip. After unzipping the file, you
will find three versions of the about logo.

Now, right click on the FoodPin folder in the project navigator and select New Group . Name the
group images. This step is optional but creating a new group allows you to better organize your
project resources. Next, drag aboutfoodpin.png (under the base folder) from Finder to the
project navigator. Make sure that Copy item if needed is enabled when prompted. The image is
then copied to the project folder. Now, select the file and bring up the File inspector. In the
localization section, you should find the Localize… button. Click the button, choose Base and
click the Localize button to confirm.

Localizing Resources

506

http://www.appcoda.com/resources/swift3/aboutfoodpin.zip

Figure 25-11. Localize the about logo

After that, you'll see the Chinese (Traditional) and German options in the localization section.
Select both languages and Xcode code will generate three versions of aboutfoodpin.png in
project navigator.

507

Figure 25-12. Enable the German and Chinese (Traditional) localization

Now that you've created the localized versions of the image, they are stored in separate folders.
You can locate the folder by selecting the localized version of image to reveal the full path in
the File Inspector. The German version of the image is stored under the de.lproj folder, while
the Traditional Chinese version is stored under the zh-Hant.lproj folder.

By default, the image generated in the localized folders is the same as the original. To localize
the image, what you need to do is to replace the images under de.lproj and zh-Hant.lproj
with their own localized versions.

508

Figure 25-13. Copy your own localized images to replace the original image

Lastly, remember to change the image of the About view controller from about to
 aboutfoodpin.png in about.storyboard , because we no longer use the about image from the
asset catalog.

Cool! It's time to test the localized UI. If you got everything right, here are what you'll see for
both German and Traditional Chinese versions.

509

Figure 25-14. Food Pin app in German (left) and Traditional Chinese (right)

In this chapter, I have walked you through the localization process in Xcode 8. By using the
export feature, it is pretty easy to localize an iPhone app.

You've learned how to localize text and images in storyboards using the built-in localization
support of Xcode. You should also know how to localize strings using the NSLocalizedString
macro. Remember that your apps are marketed to a global audience - users prefer to have an
app UI in their own language. By localizing your app, you'll be able to provide a better user
experience and attract more downloads.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinLocalization.zip.

Summary

510

http://www.appcoda.com/resources/swift3/FoodPinLocalization.zip

If we want users to like our software, we should design it to behave like a likable person:
respectful, generous and helpful.

- Alan Cooper

Up till now, you have been running and testing your app on the built-in simulator. The
simulator is a great companion for app development especially if you do not own an iPhone.
While the simulator is good, you can never rely completely on the simulator. It's not
recommended to submit your app to App Store without testing it on a real device. Chances are

Chapter 26
Deploying and Testing Your App on a
Real iOS Device

511

there are some bugs that only shows up when your app runs on a physical iPhone or over the
cellular network. If you're serious about building a great app, this is a must to test your app on
a real device before releasing it to your users.

One great news, especially for aspiring iOS developers, is that Apple no longer requires you to
enroll in the Apple Developer Program before you can test your app on an iOS device. You can
now simply sign in with your Apple ID, and your app is ready to run on your iPhone or iPad. To
some of you, I think this is one of the coolest features in Xcode 7/8. However, if your app
makes use of the services like CloudKit and Push Notifications, you still need to enroll in the
Apple Developer Program, which costs $99 per year. I know, for some, this is a significant
amount of money. But if you read the book from the very beginning and are still with me, I
believe you have demonstrated a strong determination to build an app and deploy it to your
audience. It's not easy to make it this far! So why stop here? If you're not on a tight budget, I
highly recommend you enroll in the program so that you can continue to learn the rest of the
materials and most importantly, submit your app to App Store.

To test an app on a physical device, you will need to perform a few configurations:

Request your development certificate
Create an App ID for your app
Configure your device for development
Create a provisioning profile for your app

In the old days of iOS development, you had to manage the above configurations all on your
own through the iOS Provisioning Portal (or Member Center). Xcode 8 automates the whole
signing and configuration processes by introducing a new feature called Automatic Signing.
This makes your life a lot easier. You will see what I mean shortly.

You may wonder why you need to request a certificate and go through all these complicated
procedures just to put an app on a device. Not to say, it's your own app and device. The answer
is simply based around security. Every app deployed on an iOS device is code signed. Xcode
uses both your private key and digital certificate to sign the code. By signing your code, Apple
knows you're the rightful owner of the app. As you know, Apple only issues digital certificate to

Understanding Code Signing and Provisioning Profiles

512

legitimate developers who have joined the developer program. This also prevents non-
authorized developer to deploy apps on the app store.

Apple issues two types of digital certificates: Development and Distribution. To run an app on
a real device, you just need the development certificate. Later when you submit an app to App
Store, you have to sign your app using a distribution certificate. Again, this is automatically
taken care by Xcode 8. We will discuss app submission in the last chapter. For now, let's focus
on deploying your app on a device.

Provisioning profile is another term you come across in app deployment. Provisioning refers
the process of preparing and configuring an app to launch on devices. A team provisioning
profile allows your app to be signed and run by all team members (if you're an indie developer,
you're the only member in the team) on their devices. Figure 26-4 shows an illustration of a
sample provisioning profile.

Before moving on, I would like you to review your bundle ID. As discussed before, a bundle ID
identifies a single app, so it must be unique. You must not use com.appcoda.FoodPin because it
has been used by the demo app. In this case, change the bundle ID to whatever you like. Just

Reviewing Your Bundle ID

513

make sure it is unique and in reverse-DNS format (e.g. edu.self.newfoodapp).

Note: After your app is published on the app store, you will not be able to
change the bundle ID.

Automatic signing is a new feature in Xcode 8. As mentioned before, you will need to manage
the following tasks before you can deploy and run your app on a real device:

Request your development certificate
Create an App ID for your app
Create a provisioning profile for your app

With automatic signing, you no longer need to create your development certificate or
provisioning profile manually. Xcode 8 takes care of all these tasks for you.

When creating an Xcode project, automatic signing is enabled by default. If you select the
FoodPin project in the project navigator and go to the FoodPin target, you should find the
Automatically manage signing option is on.

By now, the Team option is set to None. To use automatic signing, you have to add an account
to your project. Click the Team option and choose Add an account. Fill in your Apple
ID/password, and click Add to proceed.

Figure 26-2. Adding your iOS developer account in Xcode

Even if you haven't enrolled in the Apple Developer Program, you can still sign in with your

Automatic Signing in Xcode 8

514

Apple ID.

Once you add your account, Xcode 8 will generate the development certificate and create the
provisioning profile automatically. In the signing section, you will find your signing certificate
and provisioning profile. You can further click the info icon (next to the provisioning profile) to
reveal the details.

Figure 26-3. Xcode creates the provisioning profile and signing certificate for you

You can always review your App ID and provisioning profile in the Member Center. Open
Safari and access https://developer.apple.com/membercenter/. Sign in with your developer
account and you'll see the below screen.

515

https://developer.apple.com/membercenter/

Figure 26-4. Member Center for iOS Developer

Note: The "Certificates, identifiers & Profiles" will only appear if you have
enrolled in the Apple Developer Program.

Select "Certificates, identifiers & Profiles" and you'll navigate to another screen for managing
certificates, identifiers, devices and provisioning profiles. Choose identifiers under iOS Apps
and you will find the App ID (which is the same as your bundle ID) of your app. Figure 26-5
shows a sample App ID.

Figure 26-5. Sample App ID

To review the provisioning profile, you select Provisioning Profiles and then Development.
Your provisioning profile name is like "iOS Team Provisioning Profile: ".

Now connect your iOS device to your Mac. If it is eligible for deployment, you can select it from
the Scheme pop-up menu.

Launching the App on Your Device

516

Figure 26-6. iOS device in the Scheme pop-up menu

Quick note: If your iOS device is ineligible, fix the issue before continuing.
For example, if the device doesn't match the deployment target, upgrade the
version of iOS on the device.

You're now ready to deploy and run the app on your device. Make sure you select your iPhone
or iPad in the Scheme pop-up menu, and then hit the Run button.

Note: Remember to unlock your iPhone before deploying the app. Otherwise, you
won't be able to launch it.

For the very first time running your app, Xcode may prompt you with a security error. Even
though your app was deployed on your device, due to a security restriction, Xcode could not
launch it. Even if you try to launch it manually, you will end up with an error prompt (see
figure 26-7). To fix the error, go to Settings > General > Profiles. Select the developer profile
and click the Trust <email> option. It should prompt you for confirmation. Simply click
 Trust to proceed. Once you trust the developer, you will be able to launch the app.

517

Figure 26-7. Prompt to trust the app developer (left), Trust the developer in Settings (right)

Xcode 8 makes your developer's life easier by simplifying the way to create a provisioning
profile, app ID creation and developer certificate generation. With a few clicks, you will be able
to test your app on your devices.

Next up, I will show you how to beta testing your app using TestFlight.

Summary

518

If you are not embarrassed by the first version of your product, you've launched too late.

- Reid Hoffman, LinkedIn

Now that you have completed the testing of your app on a real device, what's next? Submit
your app directly to App Store and make it available for download? Yes, you can if your app is a
simple one. If you're developing a high quality app, don't rush to get your app out, as I suggest
you beta test your app before the actual release.

A beta test is a step in the cycle of a software product release. I know you have tested your app
using the built-in simulator and on your own device. Interestingly, you may not be able to
uncover some of the bugs, even though you're the app creator. By going through beta test, you

Chapter 27
Beta Testing with TestFlight

519

would be amazed at the number of flaws discovered at this stage. Beta testing is generally
opened to a select number of users. They may be your potential app users, your blog readers,
your Facebook followers, your colleagues, friends or even family members. The whole point of
beta testing is to let a small group of real people get their hands on your app, test it, and
provide feedback. You want your beta tester to discover as many bugs as possible in this stage
so that you can fix them before rolling out your app to the public.

You may be wondering how can you conduct a beta test for your app, how beta testers run your
app before it's available on App Store and how testers report bugs?

In iOS 8, Apple released a new tool called TestFlight to streamline the beta testing. You may
have heard of TestFlight before. It has been around for several years as an independent mobile
platform for mobile app testing. In February 2014, Apple acquired TestFlight's parent
company, Burstly. Now TestFlight is integrated into iTunes Connect and iOS that allows you to
invite beta testers using just their email addresses.

TestFlight makes a distinction between beta testers and internal users. Conceptually, both can
be your testers at the beta testing stage. However, TestFlight refers internal users as members
of your development team who have been assigned the Technical or Admin role in iTunes
Connect. You're allowed to invite up to 25 internal users to test your app. A beta tester, on the
other hand, is considered as an external user outside your team and company. You can invite
up to 2,000 users to beta test your app.

There is a catch, though. Your app must be approved by Apple before you can invite beta
testers for testing. This restriction doesn't apply to internal users. Your internal users can
begin beta testing once you upload your app to iTunes Connect.

Note: You have to enroll in the Apple Developer Program before you can access
TestFlight.

In this chapter, I will walk you through the beta test process using TestFlight. In general, we
will go through the below tasks to distribute an app for beta testing:

Create an app record on iTunes Connect.
Update the build string.
Archive and validate your app.

520

Upload your app to iTunes Connect.
Manage beta testing in iTunes Connect.

Firstly, you need an app record on iTunes Connect before you can upload an app. iTunes
Connect is a web-based application for iOS developers to manage their apps sold on App Store.
If you have enrolled in the iOS Developer Program, you can access iTunes Connect at
http://itunesconnect.apple.com. Once signed into iTunes Connect, select My Apps and the +
icon to create a new iOS app.

You'll be prompted to complete the following information:

Platform - choose app platform, which is iOS.

App name - your app name appears on App Store.

Primary language - the primary language of your app such as English.

Bundle ID - the bundle ID that was created in the previous chapter.

SKU - stands for Stock Keeping Unit. It can be anything you like. For example, your app

Creating an App Record on iTunes Connect

521

http://itunesconnect.apple.com

name is "Awesome Food App". You can use "awesome_food_app" as the SKU. You can
use letters, numbers, hyphens, periods and underscores except space.

Figure 27-2. Fill in your app information

Once you click the Create button, you'll proceed to another screen to fill in the details of your
app.

For the app information section, it displays the app details that you have just filled in.
Optionally, you can provide the app information in other languages. Simply click the English
(U.S.) button to choose the language. There is one option you have to set - choose your app's
primary category. This is the category your app will be listed on the app store. Pick the category
that best fits the app. For example, you can choose the Food & Drink category for the FoodPin
app.

In the side menu, you should also see the Pricing and Availability section. This is where you set

App Information

Pricing and Availability

522

the price of your app. By default, your app will be made available globally. In case you want to
limit it to certain countries, you can click the Edit button under the availability section, and
choose your preferred countries. Remember to save the changes before you go to the next
section.

Other than the basic information, you will need to provide additional information such as
screenshots, app description, app icon, contact information, etc.

Choose the Prepare for Submission option in the side menu to get started.

Figure 27-3. Prepare the app screenshots

These are the preview screens for your app. For the preview screens, you need to provide at
least one screenshot for 5.5-inch (1242x2208 pixels) devices. iTunes Connect then
automatically generates the screenshots for all iPhone display sizes.

Prepare for Submission

1. App Preview and Screenshots

523

To add the screenshots, you can click Choose File or simply drag the file to the box. Optionally,
you can incorporate an app video in the preview.

Note: You can further refer to Apple's iTunes Connect Developer guide for
details
(https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html

Figure 27-4. Your app description

Next, fill in your app description and at least one keyword that describes your app. If you have
more than one keyword, separate them by comma. For example, "food,restaurant,recipe".
Keywords are referenced by App Store for app search. It's one of the most important elements
impacting your app download. You may have heard of App Store Optimization (ASO). Keyword
optimization is a part of ASO. I will not go into keyword optimization here. If you want to learn
more about keyword optimization, you can refer to this article or just google ASO.

The support URL is mandatory. You can fill in the URL of your website or blog. If you don't

2. App Description and URL

524

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Appendices/Properties.html
http://blog.sensortower.com/blog/2013/10/02/the-definitive-3-step-process-for-selecting-keywords-that-get-your-ios-app-ranked-and-downloaded/

have one, register a website at wordpress.com.

You can skip the Build section and go straight to the General App Information section. This
section is all about the general information of your app. You need to upload the app icon.
Remember the app icon (1024x1024 pixels) must be not contained any transparency element.
Here is a sample of the app icon.

Figure 27-5. Sample large app icon

The icon has a square shape. After you upload the app icon to iTunes Connect, the icon will be
converted to appear with rounded corners. Next, fill in the version number (e.g. 1.0) and pick a
category that best describes your app.

You need to give a rating for your app. Just click the Edit button next to Rating and complete
the form. iTunes Connect generates a rating for your app based on your answers.

For the copyright field, you can just fill in your name or company preceded by the year the
rights were obtained (e.g. 2016 AppCoda Limited). If you want to display addition information
with your app on Korean App Store, you need to provide the Trade Representative Contact
Information.

3. General App Information

525

http://wordpress.com

Figure 27-6. Sample app information

Simply fill in your contact information in this section. The demo account field is optional. It is
for those apps that require login.

You're allowed to release your app automatically or manually right once it has been approved
by App Review. Just set it to Automatically release this version . Finally click the Save
button on the top right corner to save the changes.

If you didn't leave out any required information, the Submit for Review button should be
enabled. That means your app record was successfully created on iTunes Connect.

Now go back to Xcode. We're going to build the app and upload to iTunes Connect. But before

4. App Review Information

5. Version Release

Update Your Build String

526

that, review your project and make sure the version number matches what you entered in
iTunes Connect. In the project navigator, select the project and the target to display the project
editor. Under the General tab, review the version field under the Identity section. As this is the
first build, set the Build field to 1 .

Figure 27-7. Review the version and build in project editor

Before submitting your app, make sure you include the app icon and launch screen. The app
icon is managed by the asset catalog. You should find the AppIcon set in Asset.xcassets . To
add an icon to the set, select an app icon in the Finder and drag it to the appropriate image well
in the set viewer. You will need to provide various sizes of app icons to fit for different devices.
Just follow the instructions accordingly. For example, your Spotlight icon should be in 80x80
pixels (40pt x 2).

Prepare Your App Icon and Launch Image

527

Figure 27-8. A sample AppIcon set

We have briefly mentioned about the launch screen at the very beginning of the book. Xcode 8
allows developers to use a storyboard or Interface Builder file to design a launch screen. In the
FoodPin project, you should have a LaunchScreen.storyboard file, which is set as the default
launch screen file in the project editor.

Figure 27-9. LaunchScreen is set as the default launch screen file

Quick tip: If you do not have a launch screen, you can right click the FoodPin
folder (or your project folder) and select `New File...`. Just use the Launch
Screen template under User Interface to create one.

In the LaunchScreen.storyboard file, you will find an empty view controller. When the app is
launched, this view controller will be loaded as the startup screen. You're free to design its
interface just like what you did for other view controllers. For reference, you can refer to
Apple's Human Interface Guideline about the best practice of a launch screen. Figure 27-10
displays a sample launch screen design.

528

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/LaunchImages.html

Figure 27-10. LaunchScreen is set as the default launch screen file

Before uploading an app to iTunes Connect, you will need to create an app archive. It's pretty
easy to archive your app in Xcode 8. First, review the Archive scheme settings and ensure the
build configuration sets to Release (instead of Debug). Go up to the Xcode menu. Choose
Product > Scheme > Edit Scheme. Select Archive scheme and review the Build Configuration
setting. The option should be set to Release.

Archiving and Validating Your App

529

Figure 27-11. Review the Archive scheme setting

Now you're ready to archive your app. The Archive feature is disabled if you're using a
simulator. So first select Generic iOS Device or your device name (if you have connected a
device to your Mac) from the Scheme pop-up menu. Then go up to the Xcode menu and choose
Product > Archive.

530

Figure 27-12. Archive your app

After archiving, your archive will appear in the Organizer. It's ready to upload to iTunes
Connect. But it's best to go through the validation process to see if there are any issues. Just
click the Validate... button and then select your developer account. Xcode will then validate
your archive.

Figure 27-13. Your app archive appears in Organizer

If the validation is successful, you can click the Upload to App Store... button to upload the
archive to iTunes Connect.

You will prompted to provide a development team account during the upload process. Just
choose the appropriate account and proceed with the upload. The whole process will take
several minutes before you see the "Upload Success" message.

Upload Your App to iTunes Connect

531

Figure 27-14. Upload your app archive to App Store

Now that you have uploaded your build to iTunes Connect, let's see how you can roll out your
app for internal testing.

Go back to https://itunesconnect.apple.com. Select My Apps and then your app. In the menu,
choose TestFlight. Here you can fill in your test information including feedback email, privacy
policy and marketing URL. Note that these information can be viewed by your testers.

Once you fill in the required information, select Internal Testing from the side menu. Click the
Select Version to Test button and choose the version of the build for internal testing.

Manage Internal Testing

532

https://itunesconnect.apple.com

Figure 27-15. Choose a version to test

When you hit Next, you will be asked if your app is designed to use cryptography. For this app,
answer No to proceed.

The selected version should now be ready to test. The next thing you have to do is add at least
one internal test. Click the + button and select any of the iTunes Connect users as your internal
testers.

Finally hit the Start Testing button to send email invitations to the testers.

533

Figure 27-16. Click Start Testing to notify your internal testers

Note: Here internal users refer to those who are part of your iTunes Connect
team with the Admin, Legal, or Technical role. If you want to add more users or
change their roles, select iTunes Connect > Users and Roles, and then click +
to add the user.

When a tester receives the email notification, he/she just needs to click the Open TestFlight
button. iOS automatically opens the TestFlight app. The tester can then install your app for
internal testing.

534

Figure 27-17. Send invitation to your testers

If your tester does not have the TestFlight app installed, he/she will need to install it first. For
any future update of your beta app, your internal testers will always get the most recent build
you uploaded.

You're allowed to invite up to 25 internal users for testing. Once your app lives up to the
expectation of your users, you can invite more users to test out your app. TestFlight lets you
invite up to 2,000 users to be external testers. All you need is an email address of each of the
testers so that you can send them invite.

Manage Beta Testing with External Users

535

Figure 27-18. Submitting your app for beta app review

There is a catch, however. Your app must be approved by Beta App Review before you can send
out your invitations. To submit the app for Beta App Review, go to External Testing. Add the
build for beta app review. You will need to provide your beta app description, review notes and
contact information. Finally you can click the Submit button to submit your app for review.

Once your app is submitted for review, the build status will change to Waiting for Beta App
Review. Normally it'll take less than two days before your app is approved.

After Apple approves your beta app, you can add your external testers and notify them for beta
testing.

Figure 27-19. Adding external testers

Summary

536

TestFlight provides us with a powerful tool to easily beta test our apps. In this chapter, I have
walked you through the basics of TestFlight Beta Testing. If you're building your next app, use
the tool to invite your friends and beta users to test out your app before the official release.
This is an important step to build a high quality app.

537

Don't let people tell you your ideas won't work. If you're passionate about an idea that's
stuck in your head, find a way to build it so you can prove to yourself that it doesn't work.

- Dennis Crowley, FourSquare

Congratulations! You have probably worked weeks or months before coming to the last step of
app development. After beta testing and numerous bug fixing, your app is finally ready for
submission.

You already uploaded your app binary to iTunes Connect in the previous chapter, so it is quite

Chapter 28
Submit Your App to App Store

538

straightforward to submit your app to App Store. Once you submit your app, it will be reviewed
by Apple's App Review team before publishing it onto App Store. For a first-time app
developer, submitting an app to the app store can be a nightmare. You may need to submit
your app multiple times before Apple approves it.

In this chapter, I will walk you through the app submission process and give you some
guidelines to minimize the possibility of app rejections.

From a developer's point of view, the app approval process is a black box. I still remembered
how frustrated I felt when I submitted my first app to App Store and the app was rejected by
Apple. Since then, I've learned that there are a few things you can do to minimize the
likelihood of rejection.

1. Test your app thoroughly - Have you tested your app before submission? If you
followed the previous two chapters, you should have tested your app on a real device and
invited a group of beta testers to try it out. But let me emphasize again the importance of
testing. You shouldn't just test your app using the built-in simulator - you have to test it at
least on one real iOS device. If the app is a universal app, remember to test it on both
iPhone and iPad. If your app integrates with other services like iCloud, make sure you test
it on both cellular and Wi-Fi networks. Whenever possible, follow the instructions of the
previous chapter to beta test your app. If you submit an app that can't be run properly or
crashes unexpectedly, Apple will reject it. Also, remember to test your app under both
normal and exceptional scenarios. Let's say, your app requires Internet connection to
work properly. What happens if the device has no signal? Will the app crash? Or it just
displays a nice error message? This is something you have to take care of, and make sure
your app works in all situations.

2. Follow the App Store review guidelines - Even though we said the app store process
is like a blackbox, Apple does provide a review guideline for developers' reference. You can
access the guideline at
https://developer.apple.com/appstore/resources/approval/guidelines.html. Although I
recommend you read it thoroughly, here are a few main points:

Get Prepared and Well-Tested

539

https://developer.apple.com/appstore/resources/approval/guidelines.html

Apps that crash will be rejected
Apps that exhibit bugs will be rejected
Apps that do not perform as advertised by the developer will be rejected
Apps that include undocumented or hidden features inconsistent with the description
of the App will be rejected
Apps that use non-public APIs will be rejected

You should also take note when your app title includes any of Apple's trademarks. I once
created a book app about iOS and named it iPhone Handbook. The app was rejected
immediately by Apple. Later I changed the app title to Handbook for iPhone and the app was
approved. Apple allows the use of Apple trademarked phrases and words when used with a
referential phrase such as for.

For details, you can check out Apple's guideline at:
http://www.apple.com/legal/trademark/guidelinesfor3rdparties.html.

1. Meet the User Interface requirement - the app UI should be clean and user friendly.
Otherwise, Apple may reject your app due to substandard UI design. You can refer to UI
Design Dos and Don'ts for details.

2. Broken links - All links embedded in your app must be functional. No broken links are
allowed.

3. Finalize all images and text - All your images and text in your app should be finalized
before submitting your app for review. Your app will be rejected if it contains any
placeholder content.

For more information about the common pitfalls that cause app rejections, you can refer to
https://developer.apple.com/app-store/review/rejections/. Furthermore, don't forget to check
out the App Store Review guidelines (https://developer.apple.com/app-
store/review/guidelines/).

If you haven't read the previous chapter, please go back to read about the procedures of
creating an app record on iTunes Connect and uploading an app archive.

Submit Your App to App Store

540

http://www.apple.com/legal/trademark/guidelinesfor3rdparties.html
https://developer.apple.com/design/tips/
https://developer.apple.com/app-store/review/rejections/
https://developer.apple.com/app-store/review/guidelines/

Now go to http://itunesconnect.apple.com and select My Apps. Then select the FoodPin app.
Assuming you have completed all of the required information in App Information, click
Pricing and Availability in the side menu. If you have set your price before, this is a good
chance to review your settings again. The latest version of iTunes Connect provides a new
feature for developers to plan a price change. Let's say, you want to offer your app for free
when it is first released. After a certain period of time, you change it to a paid app. The Plan a
Price Change option can help you plan ahead for future price changes.

Figure 28-1. Fill in the availability date and price tier

Next, go to the Prepare for Submission option. Scroll down to the Build section. Click + to
add a build and select the one you want to submit.

541

http://itunesconnect.apple.com

Figure 28-2. Pick a build for submission

Finally, save the changes and click the Submit for Review button to submit your app. Once you
fill in the Export Compliance, Content Rights, and Advertising Identifier, your app is then
submitted for review.

Figure 28-3. Click Submit for Review button to submit your app

542

After you successfully submit your app, the status will be changed to Waiting for Review.

Now what's next? That's it. There are not much thing you can do right now, but just wait. In
the past, you would have to wait for around 7 days before your app was approved (or rejected).
Starting from May 2016, Apple started to cut the approval time from more than a week to less
than two days.

On average, 50% of apps are reviewed in 24 hours and over 90% are reviewed in 48
hours.

https://developer.apple.com/support/app-review/

So be patient and wait. You will receive an email notification when your app is approved or
rejected.

Once again, congratulations! You have built a real app and learned how to submit it to the App
Store. I hope your app will be approved by Apple the first time you submit it. Even if it's
rejected, don't get frustrated - many iOS developers share the same experience. Just fix the
issue and re-submit your app again.

This isn't the end. I still got a couple of things to share in the next chapter.

Summary

543

https://developer.apple.com/support/app-review/

With the iPhone 6s and 6s Plus, Apple introduced us an entirely new way to interact with our
phones known as 3D Touch. It literally adds a new dimension to the user interface and offers a
new kind of user experience. Not only can it sense your touch, the new iPhone can now sense
how much pressure you apply to the display.

With 3D Touch, you now have three new ways to interact with the iPhones: Quick Actions,
Peek, and Pop. Quick actions are essentially shortcuts for your applications. When you press
an app icon a little harder, it shows a set of quick actions, each of which allows you to jump
straight to a particular part of an app. It simply saves you a few "taps".

Chapter 29
Adopting 3D Touch

544

Figure 29-1. Sample Quick Actions

Peep and Pop purposely want to give users a quicker access of the app's contents. Take the
built-in Photos app as an example. When you press a little harder on a photo, the app "Peeks"
the photo in a pop-up. If the preview is good enough for you, simply release your finger and
you're back to the photo album. But if you want more than a preview, just press a bit harder to
"Pop" into a full view.

545

Figure 29-2. Peek and Pop in Photos app

Starting from iOS 9, Apple provides a new set of APIs for developers to work with 3D Touch. In
this chapter, I will go through some of the new APIs with you. More specifically, we will add
Quick Actions, Peek, and Pop features to the FoodPin app.

First, let's talk about Quick Actions. Apple offers two types of quick actions: static and
dynamic. Static quick actions are hardcoded in the Info.plist file. Once the user installs the
app, the quick actions will be accessible, even before the first launch of the app. As the name
suggests, dynamic quick actions are dynamic in nature. The app creates and updates the quick
actions at runtime. Take the News app as an example. Its quick actions show some of the most
frequently accessed channels. They must be dynamic because these channels will change over
time.

Home Screen Quick Actions

546

Figure 29-3. Quick actions are changeable in News app

But one thing they have in common is that you can create at most 4 quick actions, no matter
you're using static or dynamic quick actions.

It's pretty simple to create static quick actions. All you need to do is edit the Info.plist file
and add a UIApplicationShortcutItems array. Each element of the array is a dictionary
containing the following properties:

547

 UIApplicationShortcutItemType (required) - a unique identifier used to identity the quick
action. It should be unique across all apps. So a good practice is to prefix the identifier
with the app bundle ID (e.g. com.appcoda.).
 UIApplicationShortcutItemTitle (required) - the name of the quick action visible to the
user.
 UIApplicationShortcutItemSubtitle (optional) - the subtitle of the quick action. It is an
optional string displayed right below the title of the quick action.
 UIApplicationShortcutItemIconType (optional) - an optional string to specify the type of an
icon from the system library. Refer to this document for the available icon type.
 UIApplicationShortcutItemIconFile (optional) - if you want to use your own icon, specify
the icon image to use from the app's bundle. Alternatively, specify the name of the image
in an asset catalog. These icons should be square, single colour with sizes 35x35 (1x),
70x70 (2x) and 105x105 (3x).
 UIApplicationShortcutItemUserInfo (optional) - an optional dictionary containing some
extra information you want to pass. For example, one use for this dictionary is to pass the
app version.

If you want to add some static quick actions, here is an example of the
 UIApplicationShortcutItems array, which creates a "New Restaurant" shortcut:

Figure 29-4. Sample Info.plist for static quick actions

Now that you should have some ideas about static quick actions, let's talk about the dynamic
ones. As a demo, we will modify the FoodPin project, and add three quick actions to the app:

New Restaurant - go to the New Restaurant screen directly
Discover restaurants - jump right into the Discover tab
Show Favorites - jump right into the Favorites tab

548

https://developer.apple.com/library/prerelease/ios/documentation/UIKit/Reference/UIApplicationShortcutIcon_Class/index.html#//apple_ref/c/tdef/UIApplicationShortcutIconType

First things first, why do we use dynamic quick actions? A simple answer is that I want to show
you how to work with dynamic quick actions. But the actual reason is that I only want to enable
these quick actions after the user goes through the walkthrough screens.

To create a quick action programmatically, you just need to instantiate a
 UIApplicationShortcutItem object with the required properties and then assign it to the
 shortcutItems property of UIApplication . Here is an example:

let shortcutItem = UIApplicationShortcutItem(type: "com.appcoda.NewRestaurant",
localizedTitle: "New Restaurant", localizedSubtitle: nil, icon:
UIApplicationShortcutIcon(type: .add), userInfo: nil)
UIApplication.shared.shortcutItems = [shortcutItem]

The first line of code defines a shortcut item with the quick action type
 com.appcoda.NewRestaurant and system icon .Add . The title of the quick action is set to New
Restaurant . The second line of code initializes an array with the shortcut item, and set it to the
 shortcutItems property.

Do you still remember how we indicate a user has gone through the walkthrough screens? We
set the key named hasViewedWalkthrough to true into the user defaults, once the user
completes the walkthrough. This line of code can be found in the nextButtonTapped method of
the WalkthroughContentViewController class:

defaults.setBool(true, forKey: "hasViewedWalkthrough")

To create the quick actions when the user completes the walkthrough, insert the code after that
line of code:

// Add Quick Actions
if traitCollection.forceTouchCapability == UIForceTouchCapability.available {
 let bundleIdentifier = Bundle.main.bundleIdentifier
 let shortcutItem1 = UIApplicationShortcutItem(type: "\
(bundleIdentifier).OpenFavorites", localizedTitle: "Show Favorites",
localizedSubtitle: nil, icon: UIApplicationShortcutIcon(templateImageName:
"favorite-shortcut"), userInfo: nil)
 let shortcutItem2 = UIApplicationShortcutItem(type: "\
(bundleIdentifier).OpenDiscover", localizedTitle: "Discover restaurants",
localizedSubtitle: nil, icon: UIApplicationShortcutIcon(templateImageName:
"discover-shortcut"), userInfo: nil)
 let shortcutItem3 = UIApplicationShortcutItem(type: "\
(bundleIdentifier).NewRestaurant", localizedTitle: "New Restaurant",

549

localizedSubtitle: nil, icon: UIApplicationShortcutIcon(type: .add), userInfo:
nil)
 UIApplication.shared.shortcutItems = [shortcutItem1, shortcutItem2,
shortcutItem3]
}

In the above code, we first check if the device is 3D Touch capable. From iOS 9 and onwards,
the traitCollection class comes with a property called forceTouchCapability , which indicates
if the device is enabled with 3D Touch.

The rest of the code is pretty much the same with what I have covered before. We create three
quick action items. Each of which has its own identifier, title and icon. For the Discover
restaurant and Show favorites shortcuts, we use our own icons. So please download this icon
pack (http://www.appcoda.com/resources/swift3/QuickActionIcons.zip) and put the icons
into the asset catalog.

Now you're ready to go. Hit the Run button and deploy the app to your iPhone 6s/6s Plus.
After launching the app once and going through the walkthrough screens, you will be able to
see the quick actions.

550

http://www.appcoda.com/resources/swift3/QuickActionIcons.zip

Figure 29-5. Quick actions in the FoodPin app

The quick actions are not ready to work yet because we haven't implemented the required
methods to launch the quick actions. In iOS 9/10, there is a method called
 application(_:performActionFor:completionHandler:) defined in the UIApplicationDelegate
protocol. When the user selects a quick action, this method is called. So we will implement the
method in AppDelegate.swift .

But let's first declare an enum for the quick actions in the app delegate:

enum QuickAction: String {
 case OpenFavorites = "OpenFavorites"
 case OpenDiscover = "OpenDiscover"
 case NewRestaurant = "NewRestaurant"

 init?(fullIdentifier: String) {

551

 guard let shortcutIdentifier = fullIdentifier.components(separatedBy:
".").last else {
 return nil
 }

 self.init(rawValue: shortcutIdentifier)
 }
}

The Enumeration type in Swift is particularly useful for defining a group of related values. In
the QuickAction enum, we define the available quick actions in each case. We also create an
initialization method that turns a full identifier (e.g. com.appcoda.NewRestaurant) into the
corresponding enumeration case (e.g. NewRestaurant).

Now implement the application(_:performActionFor:completionHandler:) method in the
 AppDelegate class like this:

func application(_ application: UIApplication, performActionFor shortcutItem:
UIApplicationShortcutItem, completionHandler: @escaping (Bool) -> Void) {

 completionHandler(handleQuickAction(shortcutItem: shortcutItem))
}

private func handleQuickAction(shortcutItem: UIApplicationShortcutItem) -> Bool
{

 let shortcutType = shortcutItem.type
 guard let shortcutIdentifier = QuickAction(fullIdentifier: shortcutType)
else {
 return false
 }

 guard let tabBarController = window?.rootViewController as?
UITabBarController else {
 return false
 }

 switch shortcutIdentifier {
 case .OpenFavorites:
 tabBarController.selectedIndex = 0
 case .OpenDiscover:
 tabBarController.selectedIndex = 1
 case .NewRestaurant:
 if let navController = tabBarController.viewControllers?[0] {
 let restaurantTableViewController =

552

navController.childViewControllers[0]
 restaurantTableViewController.performSegue(withIdentifier:
"addRestaurant", sender: restaurantTableViewController)
 } else {
 return false
 }
 }

 return true
}

When a quick action is activated, the application(_:performActionFor:completionHandler:)
method is called. The selected shortcut (quick action) is passed as a parameter. We created a
separate method, which we will discuss later, for handling the quick action. When the quick
action is complete, you are expected to call the completion handler with an appropriate
boolean value, depending on the success/failure of the quick action.

Let's now talk about the handleQuickAction method. It takes in a shortcut item and has a
 switch statement to perform the action accordingly:

1. For .OpenFavorites and .OpenDiscover , we simply change the selected index of the tab
bar controller, so the app jumps right into the particular screen.

2. It takes a little more work for handling the New Restaurant action. We need to first
retrieve the restaurant table view controller from the tab bar controller, and then
programmatically invoke the addRestaurant segue. This will open the New Restaurant
screen directly.

You can now run the app on your iPhone 6s/6s Plus. The quick actions should now work.

Peek and Pop allows your users preview content without opening the actual screen. As the user
presses more deeply in a view controller with Peek and Pop enabled, the app first responds
the user press to indicate that content preview is available, and then displays a preview of the
content. When the user presses even harder, it pops into the full view of the content.

In iOS 9 or later, you can configure view controllers to support peek and pop by using
predefined methods in the UIViewController class, and adopting a view controller protocol

Peek and Pop

553

named UIViewControllerPreviewingDelegate . Basically, here are the tasks you need to do:

1. Register the view controller for peek and pop by calling the registerForPreviewing
method of UIViewController .

2. Adopt the two required methods of the new view controller protocol
 UIViewControllerPreviewingDelegate . By implementing the methods, you provide a
preview view controller and a commit view controller to respond to the user's press.

Now that you have some basic understanding of the implementation, we will modify the
FoodPin app to support peek and pop in the Favorites tab. Figure 29-6 illustrates how it
works.

Figure 29-6. Peek and Pop in the FoodPin app

Registering the View Controller for Peek and Pop

554

The RestaurantTableViewController class is the source controller of peek and pop. To allow
users to peek its content, the very first thing is to register the class for peek and pop. Insert the
following lines of code in the viewDidLoad method:

if(traitCollection.forceTouchCapability == .available){
 registerForPreviewing(with: self as UIViewControllerPreviewingDelegate,
sourceView: view)
}

We first check if the device is capable of 3D Touch, and then call registerForPreviewing to
itself to participate with 3D Touch preview (peek) and commit (pop).

Handling Peek and Pop

To handle peek and pop, we have to first adopt the UIViewControllerPreviewingDelegate
protocol. Simply add the name of the protocol to the class declaration:

class RestaurantTableViewController: UITableViewController,
NSFetchedResultsControllerDelegate, UISearchResultsUpdating,
UIViewControllerPreviewingDelegate

You have to implement two required methods as stated in the protocol:

 previewingContext(_:viewControllerForLocation:) - this method is called when the user
has pressed the source view deep enough to start a peek. In this case, it is the view of
 RestaurantTableViewController . You implement this method to retrieve the location of the
touch and prepare the previewing view controller accordingly.
 previewingContext(_:commitViewController:) - this method is called to let you prepare for
the display of the commit (pop) view.

Let's start to implement the first method. Add the following code snippet in the
 RestaurantTableViewController class:

func previewingContext(_ previewingContext: UIViewControllerPreviewing,
viewControllerForLocation location: CGPoint) -> UIViewController? {

 guard let indexPath = tableView.indexPathForRow(at: location) else {
 return nil
 }

555

 guard let cell = tableView.cellForRow(at: indexPath) else {
 return nil
 }

 guard let restaurantDetailViewController =
storyboard?.instantiateViewController(withIdentifier:
"RestaurantDetailViewController") as? RestaurantDetailViewController else {
 return nil
 }

 let selectedRestaurant = restaurants[indexPath.row]
 restaurantDetailViewController.restaurant = selectedRestaurant
 restaurantDetailViewController.preferredContentSize = CGSize(width: 0.0,
height: 450.0)

 previewingContext.sourceRect = cell.frame

 return restaurantDetailViewController
}

When the method is invoked, the location of the touch is passed as a parameter of the type
 CGPoint . From this piece of information, we can deduce the selected table view cell.
 UITableView provides a method called indexPathForRow(at:) , that takes in a point and returns
you an index path identifying the row (and section) of that given point. With the index path, we
can easily find out which cell has been selected.

The RestaurantDetailViewController class has been designed to display the restaurant details.
Therefore we simply use it as the previewing view controller. First, we instantiate the view
controller from storyboard using the RestaurantDetailViewController identifier. Like what we
have done in the earlier chapter, we assign the selected restaurant to the detail view controller.
But as the preview only takes up certain part of the screen, we want to limit the height to 450
points. This line of code is optional. If you do not set the preferred content size, it will still
work. iOS just displays the previewing view controller with a default size.

Lastly, we set the sourceRect property of the preview context. Before the app previews (peeks)
the content, the selected cell remains visually sharp while the rest of the content blurs. The last
line of code simply tells the preview context that it should keep the cell visually sharp.

Now that you've created the method for handling peek, let's move onto the implementation of
pop. Insert the following method in the class:

556

func previewingContext(_ previewingContext: UIViewControllerPreviewing, commit
viewControllerToCommit: UIViewController) {
 show(viewControllerToCommit, sender: self)
}

It's very straightforward to present the commit (pop) view controller. In this case, it's the detail
view controller we have created earlier. As the detail view is actually embedded in a navigation
controller, we simply call showViewController to present it.

That's it! However, before testing the changes on your device, remember to set the identifier of
the Restaurant Detail View Controller to RestaurantDetailViewController . Otherwise, you will
not be able to instantiate the controller programmatically. Go to Main.storyboard and select
Restaurant Detail View Controller. Under the Identity inspector, set the storyboard ID to
 RestaurantDetailViewController .

Figure 29-7. Assign an identifier for the Restaurant Detail View Controller

You're good to go. Plug your iPhone 6s/6s Plus to your Mac and run the app on the device. The
FoodPin app should now let you peek and pop a restaurant.

557

In this chapter, I have walked you through some basic APIs of 3D Touch. As you can see, the
APIs are pretty easy to use. And you can add quick actions without writing a line of code.

3D Touch provides an entirely new way for users to interact with their phones. As an app
developer, it is your responsibility to deliver a great user experience for your users. Now is the
best time to start thinking about how to make use of this new technology to further improve
your apps.

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPin3DTouch.zip.

Summary

558

http://www.appcoda.com/resources/swift3/FoodPin3DTouch.zip

iOS 10 introduces a number of new frameworks. Aside from SiriKit, the User Notifications
framework has also drawn a lot of attention.

Prior to iOS 10, user notifications are plain and simple. No rich graphics or media. It is just in
text format. Depending on the user's context, the notification can appear on lock screen or
home screen. If the user misses any of the notifications, they can bring up the Notification
Center to reveal all pending notifications.

Chapter 30
Developing User Notifications in iOS 10

559

Figure 30-1. User notifications in lock screen, home screen, and notifcation center

In iOS 10, Apple is revamping the notification system to support user notifications in rich
content, and custom notification UI. By rich content, it means you can include static images,
animated GIFs, videos, and audios in the notifications. Figure 30-2 gives you an idea of the
new notifications.

560

Figure 30-2. Sample user notifications in rich content

You may have heard of push notifications, which have been widely adopted in messaging apps.
Actually user notifications can be classified into two types: local notifications and remote
notifications. Local notifications are triggered by the application itself and contained on the
user's device. For example, a location-based application will send users a notification when
they are in a particular area. Or a to-do list app displays a notification when an item is close to
the due date.

Remote notifications are usually initiated by server side applications that reside on remote
servers. When the server application wants to send messages to users, it sends a notification to
Apple Push Notification Service (or APNS for short). The service then forwards the notification
to users' devices.

We're not going to talk about the implementation of remote notifications in this chapter.
Instead, we will focus on discussing local notifications, and show you how to use the new User
Notifications framework to implement the rich-content notifications.

561

So what features are we going to add in the FoodPin app? Using local notifications is a great
way to remind your users about your app. A recent study revealed that only less than 25% of
people will use an app for more than one time. In other words, over 75% of users download an
app, open it once and then never return to it.

More than 75% of App Downloads Open an App Once And Never Come Back

by Erin Griffith

http://fortune.com/2016/05/19/app-economy/

With two million apps available in the App Store, it is hard to get people notice and download
your app. Yet it is even harder to keep people using it. A smart use of user notifications can
help you retain your users, and improve the user experience of your app.

The User Notifications framework provides different triggers to initiate a local notification:

Time-based trigger - triggers a local notification after a specific amount of time (say,
after 10 minutes).
Calendar-based trigger - triggers a local notification at a specified date and time.
Location-based trigger - triggers a local notification when the user reaches a specific
location.

The FoodPin app is designed for food lovers to save their favorite restaurants. Wouldn't it be
great if the app suggests the user his/her favorite restaurants when he/she reaches a particular
location? For example, you've saved a few restaurants in Tokyo. At the time you arrive Tokyo,
the app triggers a notification showing a list of your favorite restaurants in the city.

Or you can use calendar-based trigger to initiate notifications at festival times (say, 10 days
before Christmas). The notification can be something like this:

"Hey, Christmas is around the corner. It's time to plan for the holidays and try some good
food with your friends. Here are some of your favorite restaurants you can check out."

User Notifications in the FoodPin App

562

http://fortune.com/2016/05/19/app-economy/

These are a couple of sample use cases. It's more likely users will return to the app after seeing
the notifications.

To keep things simple in this beginner book, we would not implement the above triggers.
Instead, I will show you how to use time-based triggers to trigger local notifications. That said,
it doesn't mean that the notifications are useless or spammy. And once you understand the
basics of the User Notifications framework, it is not too difficult for you to implement other
types of triggers.

What we are going to do is that we will notify the user and recommend him/her a restaurant
after a certain period of time (say, 24 hours) since he/she last used the app. Furthermore, we
will allow users to interact with the notification. When the user sees the notification, he/she
will be given an option to reserve a table. If the user taps the button, it will directly make a call
to the restaurant. Figure 30-3 illustrates a sample notification.

Figure 30-3. The FoodPin app recommends users a restaurant through local notifications

563

Does it look great? Let's get started and see how you can make the notifications happen in your
app.

The User Notifications framework is a brand new framework, introduced in iOS 10, for
managing and scheduling notifications. To implement user facing notifications, the very first
thing to do is import the framework in your code, so you can access the APIs bundled in the
framework.

Later we will implement user locations in both AppDelegate.swift and
 RestaurantTableViewController.swift . Insert the following line of code in both files:

import UserNotifications

Regardless of the type of notifications, you have to ask for the user's authorization and
permission before you can send notifications to the user's device.

If you have used iOS for some time, this kind of authorization request shouldn't be new to you.
The request is usually prompted when you first launch an app.

So in code, we usually implement the authorization request in the AppDelegate.swift file.
Insert the following code snippet in the application(_:didFinishLaunchingWithOptions:)
method:

UNUserNotificationCenter.current().requestAuthorization(options: [.alert,
.sound, .badge]) { (granted, error) in

 if granted {
 print("User notifications are allowed.")
 } else {
 print("User notifications are not allowed.")
 }
}

It is very simple to prompt users an authorization request. As you can see from the above code,

Using the User Notifications Framework

Asking for User Permission

564

you simply call requestAuthorization on the UNUserNotificationCenter object associated with
the application. And we request the ability to display alerts, play sounds, and update the app's
badge.

Now run the project to test it out. When the app is launched, you should see the authorization
request. Once you accept it, the app is allowed to send notifications to the device. To verify the
notification settings, you can go to Setting > FoodPin > Notifications.

Figure 30-4. Ask for the user's permission and authorization

Now the FoodPin app is ready to send notifications to the users. Let's first check out the basic
look & feel of a notification in iOS 10. At the top, it is the title of the notification. The next line
is the subtitle, followed by the body of the message. Figure 30-5 is an example.

Creating and Scheduling Notifications

565

Figure 30-5. A standard notification in iOS 10

The content of a user notification is represented by UNMutableNotificationContent . To create
the content, you instantiate an UNMutableNotificationContent object and set its properties to
the appropriate data. Here is an example:

let content = UNMutableNotificationContent()
content.title = "Restaurant Recommendation"
content.subtitle = "Try new food today"
content.body = "I recommend you to check out Cafe Deadend."

If you want to play a sound when the notification is triggered, you can also set the sound
property of the content:

content.sound = UNNotificationSound.default()

Scheduling the notification is as simple as creating the UNNotificationRequest object with your
preferred trigger, and then adding the request to UNUserNotificationCenter . Take a look at the
code snippet below. This is the code you need to schedule a notification.

let trigger = UNTimeIntervalNotificationTrigger(timeInterval: 10, repeats:
false)
let request = UNNotificationRequest(identifier: "foodpin.restaurantSuggestion",
content: content, trigger: trigger)

// Schedule the notification
UNUserNotificationCenter.current().add(request, withCompletionHandler: nil)

As said before, we want to trigger the notification after a specific period of time. We create a

566

 UNTimeIntervalNotificationTrigger object and set the time interval to a specific value (e.g. 10
seconds). Then we construct a UNNotificationRequest object with the notification content and
the trigger. You have to assign the request with a unique identifier. Later if you want to remove
or update the notification, you use this identifier to identify the notification. Finally, you call
the add method of UNUserNotificationCenter with the notification request to schedule the
notification.

Now that you should have some ideas about how to create and schedule the notifications, let's
implement the Restaurant Recommendation notification. Open
 RestaurantTableViewController.swift and insert the following method:

func prepareNotification() {
 // Make sure the restaurant array is not empty
 if restaurants.count <= 0 {
 return
 }

 // Pick a restaurant randomly
 let randomNum = Int(arc4random_uniform(UInt32(restaurants.count)))
 let suggestedRestaurant = restaurants[randomNum]

 // Create the user notification
 let content = UNMutableNotificationContent()
 content.title = "Restaurant Recommendation"
 content.subtitle = "Try new food today"
 content.body = "I recommend you to check out \(suggestedRestaurant.name!).
The restaurant is one of your favorites. It is located at \
(suggestedRestaurant.location!). Would you like to give it a try?"
 content.sound = UNNotificationSound.default()

 let trigger = UNTimeIntervalNotificationTrigger(timeInterval: 10, repeats:
false)
 let request = UNNotificationRequest(identifier:
"foodpin.restaurantSuggestion", content: content, trigger: trigger)

 // Schedule the notification
 UNUserNotificationCenter.current().add(request, withCompletionHandler: nil)

}

To better manage the code, we create the prepareNotification() method for handling user
notifications. We have gone through most of the code before. But the first line of code is new to
you. Here we want to randomly pick a restaurant from the favorites and recommend it to the

567

user. This line of code is used to generate a random number:

let randomNum = Int(arc4random_uniform(UInt32(restaurants.count)))

Say, you have 10 restaurants in the favorites. The function will generate a number between 0
and 9. With the random number, we can choose a suggested restaurant from the array, and
create the notification content.

One thing you have to take note is that we now set the time interval to 10 seconds. This is for
demo purpose and ease of testing. In reality, this is too short. You may want to trigger the
notification after 24 hours (24 60 60 seconds) of use or even longer:

let trigger = UNTimeIntervalNotificationTrigger(timeInterval: 86400, repeats:
false)

Now that the prepareNotification method is ready, you can call it in the viewDidLoad method.
Insert this line of code before the end of the method:

prepareNotification()

Cool! Let's run the project and have a quick test. The notification will not be presented in-app.
Therefore, once you launch your app, make sure you go back to home screen or lock screen.
Wait for 10 seconds and you should see the notification.

Note: If you test the app using the iPhone simulator, press shift-command-H to
switch to the home screen. To access the lock screen, press command-L.

If the notification appears on the lock screen, you can slide the notification to return to the
FoodPin app. And when the device is unlocked, the notification rolls down from the top as a
banner. You can swipe it further down to reveal the full content or simply tap it to jump back to
the app.

568

Figure 30-6. User notfications on home screen and lock screen

We've talked about notifications with rich content from the beginning of the chapter. So far the
notification we have created is in plain text. How can we bundle the image of the suggested
restaurant in the notification?

It is as simple as setting the attachment property of the UNMutableNotificationContent object:

content.attachments = [attachment]

The attachments property accepts an array of UNNotificationAttachment objects to display
with the notfication. Attachment can be images, sounds, audio, and movie files.

Note that you should provide the file URL of the attachment. In our case, it's the image file of
the suggested restaurant.

Adding Images to the Notification

569

If you're not forgetful, you probably remember that the image property of RestaurantMO is of
type NSData . So how can we create the image file from the image data in order to create the
attachment object?

Let's first check out the code for creating attachment. You can insert the following in the
 prepareNotification method (before the instantiation of the trigger):

let tempDirURL = URL(fileURLWithPath: NSTemporaryDirectory(), isDirectory:
true)
let tempFileURL = tempDirURL.appendingPathComponent("suggested-restaurant.jpg")

if let image = UIImage(data: suggestedRestaurant.image! as Data) {

 try? UIImageJPEGRepresentation(image, 1.0)?.write(to: tempFileURL)
 if let restaurantImage = try? UNNotificationAttachment(identifier:
"restaurantImage", url: tempFileURL, options: nil) {
 content.attachments = [restaurantImage]
 }
}

The iOS SDK provides a built-in function called UIImageJPEGRepresentation to convert image
data into a JPEG image file. What's going on in the above code is we first find the temporary
directory for saving the image. The NSTemporaryDirectory() function returns you the directory
for temporary files. And we set the temporary file name as suggested-restaurant.jpg . If you
print the file path to console, it will be something like this:

file:///Users/simon/Library/Developer/CoreSimulator/Devices/1234882-3638-3333-
A273-AFA633992D8A/data/Containers/Data/Application/8A91238F-64EE-4F33-223C-
5BB12D40BB23/tmp/suggested-restaurant.jpg

The UIImageJPEGRepresentation function takes in an UIImage object, so we first create an
 UIImage object and then pass it to the function for writing the image data to a JPEG file. With
the image file created in the temporary directory, we can create the UNNotificationAttachment
object and assign it to the attachments property of the notification.

Note: Both UIImageJPEGRepresentation and UNNotificationAttachment throw an
exception when it encounters an error. You can refer to the appendix to learn
about error handling in Swift and how to use do-try-catch.

It's time to test the app again. Run the project to open the app in simulator. Remember to go
back to home screen and wait for the notification to appear. This time you should see a small

570

thumbnail in the notification. Swipe it down to view a large version of the image.

Figure 30-7. Adding an image to notifications

Now users have only one way to interact with the notification: tap to launch the app. This is the
default action if you do not provide any custom implementation.

Actionable notifications let users respond to the notification without having to switch to the
app. One great example of actionable notifications is reminders. When you receive a
notification from the Reminders app, you will have the option to manage the reminder directly
from the notification. You can either mark it as completed or reschedule the reminder. All
these can be done without the need of launching the app.

Interacting with User Notifications

571

Figure 30-8. A sample notification from Reminders

With the User Notifications framework, we can implement custom actions for notifications
from the FoodPin app. When a notification appears on screen, it provides two options for users
to choose:

1. Reserve a table - if the user selects this option, the app will make a call to the suggested
restaurant so the user can reserve a table.

2. Later - for this option, we just dismiss the notification.

To implement custom actions, you need to create a UNNotificationAction object and associate
it with a notification category. The action object has an unique identifier and a title (e.g.
Reserve a table), which appears on the action button. Optionally, you can specify how the
action should be performed. By default, action will be a background action, which means it
dismisses the notification and perform your custom task in background. For example, if we
write the Later action in code, it will be like this:

let laterAction = UNNotificationAction(identifier: "foodpin.cancel", title:
"Later", options: [])

Creating and Registering Custom Actions

572

If the Later is selected, the action is to dismiss the notification. Thus, we do not provide
additional options when creating the action object.

On the other hand, the "Reserve a table" action will be a foreground action because we have to
bring the app to foreground so that it can make a call. Thus, the action will be implemented
like this:

let makeReservationAction = UNNotificationAction(identifier:
"foodpin.makeReservation", title: "Reserve a table", options: [.foreground])

Once you set up the action objects, you associate it with a category:

let category = UNNotificationCategory(identifier: "foodpin.restaurantaction",
actions: [makeReservationAction, cancelAction], intentIdentifiers: [], options:
[])

You give the category a unique identifier and pass the action objects to be associated with the
category. Once you have the category ready, you can register it to the
 UNUserNotificationCenter object like this:

UNUserNotificationCenter.current().setNotificationCategories(["foodpin.restaurantaction"])

So far we have created the actions and registered them to the notification center, but these
actions are not yet associated with the notification. To do that, all you need to do is set the
category identifier to the categoryIdentifier property of the notification content.

content.categoryIdentifier = "foodpin.restaurantaction"

That's the code you need to implement custom actions for user notifications. So insert the
following code snippet to the prepareNotification method (before the trigger variable):

let categoryIdentifer = "foodpin.restaurantaction"
let makeReservationAction = UNNotificationAction(identifier:
"foodpin.makeReservation", title: "Reserve a table", options: [.foreground])
let cancelAction = UNNotificationAction(identifier: "foodpin.cancel", title:
"Later", options: [])
let category = UNNotificationCategory(identifier: categoryIdentifer, actions:
[makeReservationAction, cancelAction], intentIdentifiers: [], options: [])
UNUserNotificationCenter.current().setNotificationCategories([category])

573

content.categoryIdentifier = categoryIdentifer

The above code is exactly the same what we have just discussed. Now run the app to test the
notification actions. When the notification banner appears, swipe it down and you should see
the custom actions just implemented.

Figure 30-9. Custom actions for User Notifications

If you tap the Reserve a table button, it brings up the FoodPin app. However, it will not call the
restaurant for you. As explained in the earlier section, the action object has an option that
indicates how the action should be performed. For the Later button, we did not provide any
additional options, so it is default to dismiss the notification. And for the Reserve a table
button, we set the option to .foreground , that will bring the app to foreground.

Handling the Actions

574

But how can we handle the action when the app returns to foreground?

The UNUserNotificationCenterDelegate protocol in the User Notifications framework is
designed for this purpose. The protocol defines a method for responding to the actionable
notifications:

optional func userNotificationCenter(_ center: UNUserNotificationCenter,
didReceive response: UNNotificationResponse, withCompletionHandler
completionHandler: () -> Void)

To handle the action and execute custom code, you need to implement the protocol in a
delegate object and assign it to the notification center object. When the app is returned to
foreground, the methods will be called accordingly.

We will implement this protocol in AppDelegate . But before we do that, you probably have
another question in mind. We're going to make a call to the suggested restaurant. How can we
pass the restaurant number from RestaurantTableViewController to AppDelegate ?

The notification content has a property named userInfo for you to store custom information
in the form of a dictionary. For example, you can store the phone number in the notification
like this:

content.userInfo = ["phone": suggestedRestaurant.phone!]

Put the above line of code in the prepareNotification method right below content.sound .

With the phone number associated with the notification, we now implement the
 UNUserNotificationCenterDelegate protocol. As we use AppDelegate as the delegate object,
update the class declaration to implement the protocol:

class AppDelegate: UIResponder, UIApplicationDelegate,
UNUserNotificationCenterDelegate {

When an action of a notification is selected by a user, the
 userNotificationCenter(_:didReceive:withCompletionHandler:) is called. So we provide our
own implementation for making a call to the suggested restaurant. Insert this method in the
 AppDelegate.swift file:

575

func userNotificationCenter(_ center: UNUserNotificationCenter, didReceive
response: UNNotificationResponse, withCompletionHandler completionHandler:
@escaping () -> Void) {

 if response.actionIdentifier == "foodpin.makeReservation" {
 print("Make reservation...")
 if let phone = response.notification.request.content.userInfo["phone"]
{
 let telURL = "tel://\(phone)"
 if let url = URL(string: telURL) {
 if UIApplication.shared.canOpenURL(url) {
 print("calling \(telURL)")
 UIApplication.shared.open(url)
 }
 }
 }
 }

 completionHandler()
}

As we only need to handle the Reserve a table action, we first verify the identifier of the action.
And then we retrieve the phone number of the restaurant from the userInfo property of the
notification content.

In iOS, you can use launch some of the system apps using an appropriate URL. In this case, we
want to open the Phone app to call up the number. You can use the tel scheme to initiate a
call. Here is a sample URL:

tel://<phone-number>

So in the above code, we construct the telURL and then call the open method of
 UIApplication to launch the Phone app.

At the end of the method, it is required to call the completionHandler block to let the system
know that you are done processing the notification.

The last thing you have to do is set the delegate of the notification center. In the
 application(_:didFinishLaunchingWithOptions:) of AppDelegate , add the following line of
code:

UNUserNotificationCenter.current().delegate = self

576

That's it. Run the project and deploy the app on a real device for testing. You have to use a real
device because you can't make a call using the simulator. If you select the Reserve a table
button, the app will launch the FoodPin app and switch over to the Phone app to make a call.

The User Notifications framework in iOS 10 is a brand new framework for developers to
manage and schedule user notifications. In this chapter, I have given you an overview of the
framework and demonstrate how to schedule a local notification.

With interactive and rich content notifications, you can improve the user experience and
engagement of your app. This is a good way to increase app retention rate. When you're going
to build your next app, try to make use of user notifications and see how it can add value to
your app.

Lastly, thanks for reading this book. This has been a long journey for both of us. I wish you the
best of luck and hope you will release your app very soon. If you've submitted an app that's
been approved, I'd love to hear about your success story. Feel free to email me at
simonng@appcoda.com and remember to join our developer group on Facebook
(https://www.facebook.com/groups/appcoda).

For reference, you can download the complete Xcode project from
http://www.appcoda.com/resources/swift3/FoodPinUserNotifications.zip.

Summary

577

https://www.facebook.com/groups/appcoda
http://www.appcoda.com/resources/swift3/FoodPinUserNotifications.zip

Swift is a new programming language for developing iOS, macOS, watchOS and tvOS apps. As
compared to Objective-C, Swift is a neat language and will definitely make developing iOS apps
easier. In this appendix, I will give you a brief introduction of Swift including a couple of the
changes in Swift 3.

In Swift, you declare variables with the var keyword and constants using the let keyword.
Here is an example:

var numberOfRows = 30
let maxNumberOfRows = 100

These are the two keywords you need to know for variable and constant declaration. You
simply use the let keyword for storing value that is unchanged. Otherwise, use var keyword
for storing values that can be changed.

Isn't it easier than Objective-C?

What's interesting is that Swift allows you to use nearly any character for both variable and
constant names. You can even use an emoji character for the naming.

Quick Tip: You may wonder how you can type an emoji character in Mac OS. It's
easy. Just press control-command-spacebar and an emoji picker will be
displayed.

You may notice a huge difference in variable declaration between Objective-C and Swift. In
Objective-C, developers have to specify explicitly the type information when declaring a
variable. Be it an int or double or NSString , etc.

const int count = 10;
double price = 23.55;
NSString *myMessage = @"Objective-C is not dead yet!";

Appendix - Swift Basics

Variables, Constants and Type Inference

578

It's your responsibility to specify the type. In Swift, you no longer need to annotate variables
with type information. It provides a huge feature known as Type inference. This feature
enables the compiler to deduce the type automatically by examining the values you provide in
the variable.

let count = 10
// count is inferred to be of type Int
var price = 23.55
// price is inferred to be of type Double
var myMessage = "Swift is the future!"
// myMessage is inferred to be of type String

It makes variable and constant declaration much simpler, as compared to Objective-C. Swift
provides an option to explicitly specify the type information if you wish. The below example
shows how to specify type information when declaring a variable in Swift:

var myMessage : String = "Swift is the future!"

In Objective-C, you need to end each statement in your code with a semicolon. If you forget to
do so, you will end up with a compilation error. As you can see from the above examples, Swift
doesn't require you to write a semicolon (;) after each statement, though you can still do so if
you like.

var myMessage = "No semicolon is needed"

In Swift, strings are represented by the String type, which is fully Unicode-compliant. You
can declare strings as variables or constants:

let dontModifyMe = "You cannot modify this string"
var modifyMe = "You can modify this string"

In Objective-C, you have to choose between NSString and NSMutableString classes to indicate
whether the string can be modified. You do not need to make such choice in Swift. Whenever
you assign a string as variable (i.e. var), the string can be modified in your code.

No Semicolons

Basic String Manipulation

579

Swift simplifies string manipulating and allows you to create a new string from a mix of
constants, variables, literals, as well as, expressions. Concatenating strings is super easy.
Simply add two strings together using the + operator:

let firstMessage = "Swift is awesome. "
let secondMessage= "What do you think?"
var message = firstMessage + secondMessage
print(message)

Swift automatically combines both messages and you should see the following message in
console. Note that print is a global function in Swift to print the message in console.

Swift is awesome. What do you think? You can do that in Objective C by using the
 stringWithFormat: method. But isn't the Swift version more readable?

NSString *firstMessage = @"Swift is awesome. ";
NSString *secondMessage = @"What do you think?";
NSString *message = [NSString stringWithFormat:@"%@%@", firstMessage,
secondMessage];
NSLog(@"%@", message);

String comparison is more straightforward. You can use the == operator to compare two
strings like this:

var string1 = "Hello"
var string2 = "Hello"
if string1 == string2 {
 print("Both are the same")
}

The syntax of declaring an array in Swift is similar to that in Objective C. Here is an example:

Objective C:

NSArray *recipes = @[@"Egg Benedict", @"Mushroom Risotto", @"Full Breakfast",
@"Hamburger", @"Ham and Egg Sandwich"];

Swift:

Arrays

580

var recipes = ["Egg Benedict", "Mushroom Risotto", "Full Breakfast",
"Hamburger", "Ham and Egg Sandwich"]

While you can put any objects in NSArray or NSMutableArray in Objective C, arrays in Swift
can only store items of the same type. In the above example, you can only store strings in the
string array. With type inference, Swift automatically detects the array type. But if you like, you
can also specify the type in the following form:

var recipes : String[] = ["Egg Benedict", "Mushroom Risotto", "Full Breakfast",
"Hamburger", "Ham and Egg Sandwich"]

Swift provides various methods for you to query and manipulate an array. Simply use the
count method to find the number of items in the array:

var numberOfItems = recipes.count
// recipes.count will return 5

Swift makes operations on array much simpler. You can add an item by using the += operator:

recipes += ["Thai Shrimp Cake"]

This also applies when you need to add multiple items:

recipes += ["Creme Brelee", "White Chocolate Donut", "Ham and Cheese Panini"]

To access or change a particular item in an array, pass the index of the item by using subscript
syntax just like that in Objective C and other programming language:

var recipeItem = recipes[0]
recipes[1] = "Cupcake"

One interesting feature of Swift is that you can use … to change a range of values. Here is an
example:

recipes[1...3] = ["Cheese Cake", "Greek Salad", "Braised Beef Cheeks"]

This changes the item 2 to 4 of the recipes array to "Cheese Cake", "Greek Salad" and "Braised
Beef Cheeks". (Remember the first item in an array starts with the index 0. This is why index 1
refers to item 2.)

581

If you print the array to console, here is the result:

Egg Benedict
Cheese Cake
Greek Salad
Braised Beef Cheeks
Ham and Egg Sandwich

Swift provides three primary collection types: arrays, dictionaries and sets. Now let's talk
about dictionaries. Each value in a dictionary is associated with a unique key. To declare a
dictionary in Swift, you write the code like this:

var companies = ["AAPL" : "Apple Inc", "GOOG" : "Google Inc", "AMZN" :
"Amazon.com, Inc", "FB" : "Facebook Inc"]

The key and value in the key-value pairs are separated by a colon. The key-value pairs are
surrounded by a pair of square brackets, each of which is separated by commas.

Like array and other variables, Swift automatically detects the type of the key and value. But, if
you like, you can specify the type information by using the following syntax:

var companies: [String: String] = ["AAPL" : "Apple Inc", "GOOG" : "Google Inc",
"AMZN" : "Amazon.com, Inc", "FB" : "Facebook Inc"]

To iterate through a dictionary, use the for-in loop.

for (stockCode, name) in companies {
 print("\(stockCode) = \(name)")
}

// You can also use the keys and values properties to
// retrieve the keys and values of the dictionary.
for stockCode in companies.keys {
 print("Stock code = \(stockCode)")
}
for name in companies.values {
 print("Company name = \(name)")
}

Dictionaries

582

To access the value of a particular key, specify the key using the subscript syntax. If you want to
add a new key-value pair to the dictionary, simply use the key as the subscript and assign it
with a value like below:

companies["TWTR"] = "Twitter Inc"

Now the companies dictionary contains a total of 5 items. The "TWTR":"Twitter Inc" pair is
automatically added to the companies dictionary.

A set is very similar to an array. While an array is an ordered collection, a set is an unordered
collection. Items in an array can be duplicated. A set stores no repeated values.

To declare a set, you can write like this:

var favoriteCuisines: Set = ["Greek", "Italian", "Thai", "Japanese"]

The syntax is very similar to creating an array, but you have to explicitly specify the type Set .

As mentioned, a set is unordered collection of distinct items. If you declare a set with
duplicated values, the set will not store the duplicates. Here is an example:

Operations on sets are quite similar to array. You can use for-in loop to iterate over a set. But
to add a new item to a set, you can't use the += operator. You have to call the insert method:

favoriteCuisines.insert("Indian")

With sets, you can easily determine the values two sets have in common, or vice versa. For
example, you use two sets to represent the favorite cuisines of two persons:

var tomsFavoriteCuisines: Set = ["Greek", "Italian", "Thai", "Japanese"]
var petersFavoriteCuisines: Set = ["Greek", "Indian", "French", "Japanese"]

You want to find out the common cuisines which they both love. You can call the intersection

Set

583

method like this:

tomsFavoriteCuisines.intersection(petersFavoriteCuisines)

This will return you the result: {"Greek", "Japanese"} .

Or if you want to determine which cuisines they don't have in common, you can use the
 symmetricDifference method:

tomsFavoriteCuisines.symmetricDifference(petersFavoriteCuisines)
// Result: {"French", "Italian", "Thai", "Indian"}

In Objective C, you create separate interface (.h) and implementation (.m) files for classes.
Swift no longer requires developers to do that. You can define classes in a single file (.swift)
without separating the external interface and implementation.

To define a class, you use the class keyword. Here is a sample class in Swift:

class Recipe {
 var name: String = ""
 var duration: Int = 10
 var ingredients: [String] = ["egg"]
}

In the above example, we define a Recipe class with three properties including name duration
and ingredients. Swift requires you to provide the default values of the properties. You'll end
up with a compilation error if the initial values are missing.

What if you don't want to assign a default value? Swift allows you to write a question mark (?)
after the type of a value to mark the value as optional.

class Recipe {
 var name: String?
 var duration: Int = 10
 var ingredients: [String]?
}

In the above code, the name and ingredients properties are automatically assigned with a

Classes

584

default value of nil . We will discuss optionals in details in later section. To create an instance
of a class, just use the below syntax:

var recipeItem = Recipe()
// You use the dot notation to access or change the property of an instance.
recipeItem.name = "Mushroom Risotto"
recipeItem.duration = 30
recipeItem.ingredients = ["1 tbsp dried porcini mushrooms", "2 tbsp olive oil",
"1 onion, chopped", "2 garlic cloves", "350g/12oz arborio rice", "1.2 litres/2
pints hot vegetable stock", "salt and pepper", "25g/1oz butter"]

Swift allows you to subclass classes and adopt protocols. For example, if you have a
 SimpleTableViewController class that extends from UIViewController and adopts both
 UITableViewDelegate and UITableViewDataSource protocols, you can write the class declaration
like this:

class SimpleTableViewController : UIViewController, UITableViewDelegate,
UITableViewDataSource

Swift allows you to define methods in class, structure or enumeration. I'll focus on instance
methods of a class here. You can use the func keyword to declare a method. Here is a sample
method without return value and parameters:

class TodoManager {
 func printWelcomeMessage() {
 print("Welcome to My ToDo List")
 }
}

In Swift, you call a method by using dot syntax:

todoManager.printWelcomeMessage()

If you need to declare a method with parameters and return values, the method will look this:

class TodoManager {
 func printWelcomeMessage(name:String) -> Int {
 print("Welcome to \(name)'s ToDo List")

Methods

585

 return 10
 }
}

The syntax looks a bit awkward especially for the -> operator. The above method takes a
name parameter in String type as the input. The -> operator is used as an indicator for
method with a return value. In the above code, you specify a return type of Int that returns
the total number of todo items. Below demonstrates how you call the method:

var todoManager = TodoManager()
let numberOfTodoItem = todoManager.printWelcomeMessage(name: "Simon")
print(numberOfTodoItem)

Control flow and loops employ a very C-like syntax. As you can see in the previous section,
Swift provides for-in loop to iterate through arrays and dictionaries.

for loops In case you just want to iterate over a range of values, you can use the ... or ..<
operators. These are the new operators introduced in Swift for expressing a range of values.
Here is an example:

for i in 0..<5 {
 print("index = \(i)")
}

This would print out the following result in console:

index = 0
index = 1
index = 2
index = 3
index = 4

So what's the difference between ..< and ... ? If we replace the ..< operator with ... in
the above example, this defines a range that runs from 0 to 5 and 5 is included in the range.
Here is the console result:

index = 0
index = 1

Control Flow

586

index = 2
index = 3
index = 4
index = 5

if-else statement Just like Objective-C, you can use if statement to execute code based on a
certain condition. The syntax of the if-else statement is pretty similar to that in Objective-C.
Swift just makes the syntax even simpler in that you no longer need to enclose the condition
within a pair of round brackets.

var bookPrice = 1000;
if bookPrice >= 999 {
 print("Hey, the book is expensive")
} else {
 print("Okay, I can affort it")
}

switch statement I'd just like to highlight the switch statement in Swift that is a dramatic
improvement compared to its Objective C counterpart. Take a look at the following sample
switch statement. Do you notice anything special?

switch recipeName {
 case "Egg Benedict":
 print("Let's cook!")
 case "Mushroom Risotto":
 print("Hmm... let me think about it")
 case "Hamburger":
 print("Love it!")
 default:
 print("Anything else")
}

First up, the switch statement can now handle strings. You can't do switching on NSString in
Objective-C. You had to use several if statements to implement the above code. At last Swift
brings us this most sought after utilization of switch statement.

Another interesting feature that you may notice is that there is no break. Recalled that in
Objective-C, you need to add a break in every switch case. Otherwise, it will fall through to the
next case. In Swift, you do not need to add the break statement explicitly. Switch statements in
Swift do not fall through the bottom of each case and into the next one. Instead, as soon as the
first matching case completes, the entire switch statement completes its execution.

587

On top of that, the switch statement now supports range matching. Take a look at the below
code:

var speed = 50
switch speed {
case 0:
 print("stop")
case 0...40:
 print("slow")
case 41...70:
 print("normal")
case 71..<101:
 print("fast")
default:
 print("not classified yet")
}

// as the speed falls within the range of 41 and 70, it'll print normal to
console

The switch case lets you check values within a certain range by using two new operators: …
and ..< . Both operators serve as a shortcut for expressing a range of values.

Consider the sample range of "41…70", the … operator defines a range that runs from 41 to 70,
including both 41 and 70. If we use the ..< operator instead of … in the example, this defines
a range that runs from 41 to 69. In other words, 70 is excluded from the range.

Swift introduces an advanced type that is not available in Objective-C known as tuples. Tuples
allow developers to create a group of values and pass it around. Consider that you're
developing a method call to return multiple values, you can now use tuples as a return value
instead of returning a custom object.

Tuples treat multiple values as a single compound value. Here is an example:

let company = ("AAPL", "Apple Inc", 93.5)

The above code creates a tuple that includes stock code, company name and stock price. As you
may be aware, you're allowed to put any value of any type within a tuple. You can decompose

Tuples

588

the values of tuples and use it like this:

let (stockCode, companyName, stockPrice) = company
print("stock code = \(stockCode)")
print("company name = \(companyName)")
print("stock price = \(stockPrice)")

A better way to use tuple is to give each element in tuple a name and you can access the
element value by using dot notation. Here is another example:

let product = (id: "AP234", name: "iPhone 6", price: 599)
print("id = \(product.id)")
print("name = \(product.name)")
print("price = USD\(product.price)")

A common use of tuples is to serve as a return value. In some cases, you want to return
multiple values in a method without using a custom class. You can use tuples as the return
value like the following example:

class Store {
 func getProduct(number: Int) -> (id: String, name: String, price: Int) {
 var id = "IP435", name = "iMac", price = 1399
 switch number {
 case 1:
 id = "AP234"
 name = "iPhone 6"
 price = 599
 case 2:
 id = "PE645"
 name = "iPad Air"
 price = 499
 default:
 break
 }

 return (id, name, price)
 }
}

In the above code, we create a method call named getProduct that takes in a number and
returns a product as tuple. You can call the method and store the return value like below:

let store = Store()
let product = store.getProduct(number: 2)

589

print("id = \(product.id)")
print("name = \(product.name)")
print("price = USD\(product.price)")

What is optional? When declaring variables in Swift, they are designated as non-optional by
default. In other words, you have to assign a non-nil value to the variable. If you try to set a
 nil value to a non-optional, the compiler will say, "Nil cannot be assigned to type String!"

var message: String = "Swift is awesome!" // OK
message = nil // compile-time error

The same applies when declaring properties in a class. The properties are designated as non-
optional by default.

class Messenger {
 var message1: String = "Swift is awesome!" // OK
 var message2: String // compile-time error
}

You will get a compile-time error for message2 because it's not assigned with an initial value. If
you have written in Objective-C before, you may be a bit surprised. In Objective-C, you won't
get any compile-time error when assigning nil to a variable or declaring a property without
initial value:

NSString *message = @"Objective-C will never die!";
message = nil;

class Messenger {
 NSString *message1 = @"Objective will never die!";
 NSString *message2;
}

However, it doesn't mean you can't declare a property without assigning an initial value in
Swift. Swift introduces optional type to indicate the absence of a value. It is defined by adding a
question mark ? operator after the type declaration. Here is an example:

class Messenger {
 var message1: String = "Swift is awesome!" // OK
 var message2: String? // OK

Optionals Overview

590

}

You can still assign a value when the variable is defined as optional. However if the variable is
not assigned with any value like the below code, its value automatically defaults to nil.

Swift is designed for safety. As Apple mentioned, optionals are an example of the fact that Swift
is a type safe language. As you can see from the above examples, Swift's optionals provide
compile-time check that would prevent some common programming errors happening at run-
time. Let's go through the below example and you will have a better understanding of the
power of optionals.

Consider the following method in Objective-C:

- (NSString *)findStockCode:(NSString *)company {
 if ([company isEqualToString:@"Apple"]) {
 return @"AAPL";
 } else if ([company isEqualToString:@"Google"]) {
 return @"GOOG";
 }

 return nil;
}

You can use the findStockCode: method to get the stock code for a particular listed company.
For demo purposes, the method only returns you the stock code of Apple and Google. For other
inputs, it returns nil .

Assuming the method is defined within the same class and we use it like this:

NSString *stockCode = [self findStockCode:@"Facebook"]; // nil is returned
NSString *text = @"Stock Code - ";
NSString *message = [text stringByAppendingString:stockCode]; // runtime error
NSLog(@"%@", message);

The code can compile correctly but as the method returns nil for Facebook, a runtime
exception is thrown when running the app. With Swift's optionals, instead of discovering the
error at runtime, it reveals the error at compile time. If we rewrite the above example in Swift,
it will look like this:

Why Optionals?

591

func findStockCode(company: String) -> String? {
 if (company == "Apple") {
 return "AAPL"
 } else if (company == "Google") {
 return "GOOG"
 }

 return nil
}

var stockCode:String? = findStockCode(company: "Facebook")
let text = "Stock Code - "
let message = text + stockCode // compile-time error
print(message)

 stockCode is defined as an optional. That means it can either contain a string or nil . You
can't execute the above code because the compiler detects a potential error ("value of optional
type String? is not unwrapped) and tells you to correct it.

As you can see from the example, Swift's optionals reinforce the nil-check and offer compile-
time cues to developers. Thus, the use of optionals contributes to better code quality.

So how can we make the code work? Apparently, we need to test if stockCode contains a nil
value or not. We modify the code as follows:

var stockCode:String? = findStockCode(company: "Facebook")
let text = "Stock Code - "
if stockCode != nil {
 let message = text + stockCode!
 print(message)
}

Just like the Objective-C counterpart, we used if to perform the nil-check. Once we know the
optional must contain a value, we unwrap it by placing an exclamation mark (!) to the end of
the optional's name. In Swift this is known as forced unwrapping. You use the ! operator to
unwrap an optional and reveal the underlying value.

Referring to the above example, we only unwrap the "stockCode" optional after the nil-check.
We know the optional must contain a non-nil value before unwrapping it using the !

Unwrapping Optionals

592

operator. It is always recommended to ensure that an optional contains a value before
unwrapping it.

But what if we forget the verification like below?

var stockCode:String? = findStockCode(company: "Facebook")
let text = "Stock Code - "
let message = text + stockCode! // runtime error

There will be no compile-time error. The compiler assumes that the optional contains a value
as forced unwrapping is used. When you run the app, a runtime error is shown with the
following message:

fatal error: Can't unwrap Optional.None

Other than forced unwrapping, optional binding is a simpler and recommended way to unwrap
an optional. You use optional binding to check if the optional contains a value or not. If it does
contain a value, unwrap it and put it into a temporary constant or variable.

There is no better way to explain optional binding than using an example. We convert the
sample code in the previous example into optional binding:

var stockCode:String? = findStockCode(company: "Facebook")
let text = "Stock Code - "
if let tempStockCode = stockCode {
 let message = text + tempStockCode
 print(message)
}

The if let (or if var) are the two keywords of optional binding. In plain English, the code
says, "If stockCode contains a value, unwrap it, set its value to tempStockCode and execute the
conditional block. Otherwise, just skip it the block". As tempStockCode is a new constant, you
no longer need to use the ! suffix to access its value.

You can further simplify the code by evaluating the function in the if statement:

let text = "Stock Code - "

Optional Binding

593

if var stockCode = findStockCode(company: "Apple") {
 let message = text + stockCode
 print(message)
}

Here stockCode is not an optional. There is no need to use the ! suffix to access its value in
the conditional block. If a nil value is returned from the function, the block will not be
executed.

Before explaining optional chaining, let's tweak the original example. We create a new class
named Stock with the code and price properties, which are optionals. The findStockCode
function is modified to return a Stock object instead of String.

class Stock {
 var code: String?
 var price: Double?
}

func findStockCode(company: String) -> Stock? {
 if (company == "Apple") {
 let aapl: Stock = Stock()
 aapl.code = "AAPL"
 aapl.price = 90.32

 return aapl

 } else if (company == "Google") {
 let goog: Stock = Stock()
 goog.code = "GOOG"
 goog.price = 556.36

 return goog
 }

 return nil
}

We rewrite the original example as below. We first find the stock code/symbol by calling the
 findStockCode function. And then we calculate the total cost needed when buying 100 shares
of the stock.

Optional Chaining

594

if let stock = findStockCode(company: "Apple") {
 if let sharePrice = stock.price {
 let totalCost = sharePrice * 100
 print(totalCost)
 }
}

As the return value of findStockCode() is an optional, we use optional binding to check if it
contains an actual value. Apparently, the price property of the Stock class is an optional.
Again we use the if let statement to test if stock.price contains a non-nil value.

The above code works without any error. Instead of writing nested if let , you can simplify
the code by using Optional Chaining. The feature allows us to chain multiple optionals
together with the ?. operator. Here is the simplified version of the code:

if let sharePrice = findStockCode(company: "Apple")?.price {
 let totalCost = sharePrice * 100
 print(totalCost)
}

Optional chaining provides an alternative way to access the value of price. The code now looks
a lot cleaner and simpler. Here I just cover the basics of optional chaining. You can find further
information about optional chaining in Apple's Swift guide.

Swift introduced a new feature called Failable Initializers. Initialization is the process of
providing initial values to each of the stored properties of a class. In some cases, the
initialization of an instance may fail. Now such failure can be reported using a failable
initializer. The resulting value of a failable initializer either contains the object or nil . You
will need to use if let to check if the initialization is successful or not. Let me give you an
example:

let myFont = UIFont(name : "AvenirNextCondensed-DemiBold", size: 22.0)

The initialization of the UIFont object will fail if the font file doesn't exist or is unreadable.
This initialization failure will report using a failable initializer. The returned object is an
optional that can either be the object itself or nil. Thus, we need to use if let to handle the

Failable Initializers

595

optional:

if let myFont = UIFont(name : "AvenirNextCondensed-DemiBold", size: 22.0) {

 // Further processing

}

The concept of Generics is not new and has been around for a long time in other programming
languages like Java. But for iOS developers, you may be new to Generics.

Generic Functions Generics are one of the most powerful features of Swift and allow you to
write flexible functions. So what are Generics exactly? Well, let's take a look at an example.
Suppose you're developing a process function:

func process(a: Int, b: Int) {
 // do something
}

The function accepts two integer values for further processing. What if you need to take in
other type of values like Double ? You probably write another function like this:

func process(a: Double, b: Double) {
 // do something
}

Both functions look very similar. Assuming the bodies of the functions are identical, the main
difference is the types of inputs they take in. With Generics, you can simplify them into one
generic function that handles multiple input types:

func process<T>(a: T, b: T) {
 // do something
}

Now it defines a placeholder type instead of an actual type name. The <T> after the function
name indicates that this is a generic function. For the function arguments, the actual type
name is replaced with a generic type T .

Generics

596

You can call the process function in the same way. The actual type to use in place of T will be
determined each time the function is called.

process(a: 689, b: 167)

Let's take a look at another example. Suppose you're writing another function to compare if
two integer values are equal.

func isEqual(a: Int, b: Int) -> Bool {
 return a == b
}

If you need to compare other types of value such as String, you'll write another function like
this:

func isEqual(a: String, b: String) -> Bool {
 return a == b
}

With Generics, you'll combine the two functions into one:

func isEqual<T>(a: T, b: T) -> Bool {
 return a == b
}

Again, we use T as a placeholder of the value types. But if you test out the above code in Xcode,
the function will not compile. The problem lies with the a==b equality check. Though the
function accepts values with any types, not every type can support the equal to operator (==).
This is why Xcode indicates an error. In this case, you need to apply a type constraint for the
generic function.

func isEqual<T: Equatable>(a: T, b: T) -> Bool {
 return a == b
}

You write type constraint by placing a protocol constraint after a type parameter's name,
separated by a colon. Here the Equatable is the protocol constraint. In other words, the

Generic Functions with Type Constraints

597

function will only accept values that support the Equatable protocol.

In Swift, it comes with a standard protocol called Equatable. For any types conforming to the
Equatable protocol, they support the equal to (==) operator. All standard types like String, Int,
Double support the Equatable protocol.

So you can use the isEqual function like this:

isEqual(a: 3, b: 3) // true
isEqual(a: "test", b: "test") // true
isEqual(a: 20.3, b: 20.5) // false

You are not limited to use Generics in functions. Swift allows you to define your own generic
types. This can be custom classes or structure. The built-in Array and Dictionary are examples
of generic types.

Let's take a look at the below example:

class IntStore {
 var items = [Int]()

 func addItem(item: Int) {
 items.append(item)
 }

 func findItemAtIndex(index: Int) -> Int {
 return items[index]
 }
}

The IntStore class is a simple class to store an array of Int items. It provides two methods
for:

Adding a new item to the store
Returning a specific item from the store

Apparently, the IntStore class supports items in Int type. Wouldn't it be great if you can
define a generic ValueStore class that manages any types of values. Here is the generic version

Generic Types

598

of the class:

class ValueStore<T> {
 var items = [T]()

 func addItem(item: T) {
 items.append(item)
 }

 func findItemAtIndex(index: Int) -> T {
 return items[index]
 }
}

Like what you have learned in the Generic functions section, you use a placeholder type
parameter (T) to indicate a generic type. The type parameter () after the class name indicates
the class is a generic type.

To instantiate the class, you write the type to be stored in the ValueStore within angle
brackets.

var store = ValueStore<String>()
store.addItem(item: "This")
store.addItem(item: "is")
store.addItem(item: "generic")
store.addItem(item: "type")
let value = store.findItemAtIndex(index: 1)

You can call the method the same way as before.

A computed property does not actually store a value. Instead, it provides its own getter and
setter to compute the value. Here is an example:

class Hotel {
 var roomCount:Int
 var roomPrice:Int
 var totalPrice:Int {
 get {
 return roomCount * roomPrice
 }
 }

Computed Properties

599

 init(roomCount: Int = 10, roomPrice: Int = 100) {
 self.roomCount = roomCount
 self.roomPrice = roomPrice
 }
}

The Hotel class has two stored properties: roomPrice and roomCount . To calculate the total
price of a hotel, we can simply multiply roomPrice by roomCount . In the past, you might create
a method that performs the calculation and returns the total price. With Swift, you can use
computed properties instead. In the example, totalPrice is a computed property. Rather than
storing a fixed value, it defines a custom getter that actually performs the calculation and
returns the total price of the rooms. Just like stored properties, you can access the computed
property through dotted syntax:

let hotel = Hotel(roomCount: 30, roomPrice: 100)
print("Total price: \(hotel.totalPrice)")
// Total price: 3000

Optionally, you can define a custom setter for the computed property. Consider the same
example again:

class Hotel {
 var roomCount:Int
 var roomPrice:Int
 var totalPrice:Int {
 get {
 return roomCount * roomPrice
 }

 set {
 let newRoomPrice = Int(newValue / roomCount)
 roomPrice = newRoomPrice
 }
 }

 init(roomCount: Int = 10, roomPrice: Int = 100) {
 self.roomCount = roomCount
 self.roomPrice = roomPrice
 }
}

Here we define a custom setter to calculate the new room price when the value of total price is

600

updated. When a new value of totalPrice is set, a default name of newValue can be used in
the setter. Base on newValue , you can then perform the calculation and update the roomPrice
accordingly.

Could you use methods instead of computed properties? Sure. To me, it is a matter of coding
style. Computed properties are especially useful for performing simple conversions and
calculations. As you can see from the above example, the implementation is much cleaner.

Property observers are one of my favorite features of Swift. Property observers observe and
respond to changes in a property's value. The observers are called every time a property's value
is set. You have the option to define two kinds of observers on a property:

 willSet is called just before the value is stored.
 didSet is called immediately after the new value is stored.

Consider the Hotel class again. For instance, we want to limit the room price to a thousand
dollars. Whenever a caller sets the room price to a value larger than 1000, we will set it to
1000. You can then use a property observer to monitor the value change like this:

class Hotel {
 var roomCount:Int
 var roomPrice:Int {
 didSet {
 if roomPrice > 1000 {
 roomPrice = 1000
 }
 }
 }

 var totalPrice:Int {
 get {
 return roomCount * roomPrice
 }

 set {
 let newRoomPrice = Int(newValue / roomCount)
 roomPrice = newRoomPrice
 }
 }

Property Observers

601

 init(roomCount: Int = 10, roomPrice: Int = 100) {
 self.roomCount = roomCount
 self.roomPrice = roomPrice
 }
}

Say, you set the roomPrice property to 2000 . The didSet observer will be called and perform
the validation. Because the value is larger than 1000, the room price is then set it to 1000. As
you can see, property observers are particularly useful for value change notifications.

 as! (or as?) is known as a failable cast operator. You have to either use as! or as? to
downcast an object to a subclass type. If you're quite sure that the downcasting will succeed,
you can use as! to force the casting. Here is an example:

let cell = tableView.dequeueReusableCell(withIdentifier: cellIdentifier, for:
indexPath) as! RestaurantTableViewCell

If you're not sure if the casting will succeed, just use the as? operator. By using as? , it
returns an optional value, but in case the downcasting fails, the value will be nil .

Starting from Swift 2, Apple introduces a new control flow operator called repeat-while ,
which is to replace the classic do-while loop. Here is an example:

var i = 0
repeat {
 i += 1
 print(i)
} while i < 10

 repeat-while evaluates its condition at the end of each pass through the loop. If the condition
is true , it repeats the block of code again. It exits the loop when the condition evaluates to
 false .

Failable Casts

repeat-while

for-in where Clauses

602

Not only can you iterate over all items in an array using for-in loop, you can define a
condition to filter the items using the where clause. When you loop through an array, for
example, only those items that meet the criteria will be processed.

let numbers = [20, 18, 39, 49, 68, 230, 499, 238, 239, 723, 332]
for number in numbers where number > 100 {
 print(number)
}

In the above example, it only prints out those numbers that are greater than 100.

The guard keyward was first introduced in Swift version 2. According to Apple's
documentation, guard is described like this:

A guard statement, like an if statement, executes statements depending on the Boolean
value of an expression. You use a guard statement to require that a condition must be
true in order for the code after the guard statement to be executed.

Before I further explain the guard statement, let's go straight to the following example:

struct Article {
 var title:String?
 var description:String?
 var author:String?
 var totalWords:Int?
}

func printInfo(article: Article) {
 if let totalWords = article.totalWords where totalWords > 1000 {
 if let title = article.title {
 print("Title: \(title)")
 } else {
 print("Error: Couldn't print the title of the article!")
 }
 } else {
 print("Error: It only works for article with more than 1000
words.")
 }
}

let sampleArticle = Article(title: "Swift Guide", description: "A beginner's

Guard

603

guide to Swift 2", author: "Simon Ng", totalWords: 1500)
printInfo(sampleArticle)

In the above code, we create a printInfo function to display the title of an article. However,
we will only print the information for an article with more than a thousand words. As the
variables are optionals, we use if let to verify if the optional contains a value or not. If the
optional is nil , we display an error message. If you execute the code in Playgrounds, it should
display the title of the article.

In general, the if-else statements follow this pattern:

if some conditions are met {
 // do something
 if some conditions are met {
 // do something
 } else {
 // show errors or performs other operations
 }
} else {
 // show errors or performs other operations
}

As you may notice, if you have to test more conditions, it will be nested with more conditions.
There is nothing wrong with that programmatically. But in terms of readability, your code will
get messy if there are a lot of nested conditions.

This is where the guard statement comes in. The syntax of guard looks like this:

guard else {
 // what to do if the condition is not met
}
// continue to perform normal actions

If the condition, defined in the guard statement is not met, the code inside the else branch is
executed. On the other hand, if the condition is met, it skips the else clause and continues the
code execution.

If you rewrite the sample code using guard , it is a lot cleaner:

func printInfo(article: Article) {
 guard let totalWords = article.totalWords , totalWords > 1000 else {

604

 print("Error: It only works for article with more than 1000 words.")
 return
 }

 guard let title = article.title else {
 print("Error: Couldn't print the title of the article!")
 return
 }

 print("Title: \(title)")
}

With guard , you focus on handling the condition you don't want. Furthermore, it forces you to
handle one case at a time, avoiding nested conditions. Thus, the code is cleaner and easier to
read.

When developing an app or any programs, you'll need to handle every possible scenarios,
whether it's good or bad. Obviously, things may go wrong. Say, if you're developing an app that
connects to a cloud server, your app has to deal with situations where the Internet connection
is unavailable or the cloud server is failed to connect.

In the older version of Swift, it lacks a proper error handling model. As an example, you handle
error conditions like this:

let request = NSURLRequest(URL: NSURL(string: "http://www.apple.com")!)
var response:NSURLResponse?
var error:NSError?
let data = NSURLConnection.sendSynchronousRequest(request, returningResponse:
&response, error: &error)

if error == nil {
 print(response)
 // Parse the data
} else {
 // Handle error
}

When calling a method that may cause a failure, you normally pass it with an NSError object
(as a pointer). If there is an error, the object will be set with the corresponding error. You then

Error Handling

605

check if the error object is nil or not and respond to the error accordingly.

That's how you handle errors in Swift 1.2.

Note: NSURLConnection.sendSynchronousRequest() has been deprecated in iOS 9. As
most readers are familiar with the usage, it is used in the example.

try / throw / catch

Beginning from Swift 2, it comes with an exception-like model using try-throw-catch
keywords. The same code snippet will become this:

let request = URLRequest(url: URL(string: "https://www.apple.com")!)
var response:URLResponse?
do {
 let data = try NSURLConnection.sendSynchronousRequest(request, returning:
&response)
 print(response)

 // Parse the data
} catch {
 // handle error
 print(error)
}

Now you use do-catch statement to catch errors and handle them accordingly. As you may
notice, we put a try keyword in front of the method call. With the introduction of the error
handling model, some methods can throw errors to indicate failures. When we invoke a
throwing method, you will need to put a try keyword in front of it.

How do you know if a method throws an error? As you type the method in the built-in editor,
the throwing methods are indicated by the throws keyword.

606

Now that you should understand how to call a throwing method and catch the errors, how do
you indicate a method or function that can throw an error?

Imagine you're modelling a lite shopping cart. Customers can use the cart to temporarily store
and checkout their items, but this cart will throw an error for the following conditions:

The shopping cart can only store a maximum of 5 items. Otherwise, it throws a
 cartIsFull error.
There must be at least one item in the shopping cart during checkout. Otherwise, it throws
a cartIsEmpty error.

In Swift, errors are represented by values of types conforming to the Error protocol.

Note: The protocol ErrorType in Swift 2 has been changed to Error in Swift 3.

Usually you use an enumeration to model the error conditions. In this case, you can create an
enumeration that adopts Error like this for the shopping cart errors:

enum ShoppingCartError: Error {
 case cartIsFull
 case emptyCart
}

For the shopping cart, we create a LiteShoppingCart class to model its functions. Here is a
sample code snippet:

struct Item {
 var price:Double
 var name:String
}

class LiteShoppingCart {
 var items:[Item] = []

 func addItem(item:Item) throws {
 guard items.count < 5 else {
 throw ShoppingCartError.cartIsFull
 }

 items.append(item)
 }

607

 func checkout() throws {
 guard items.count > 0 else {
 throw ShoppingCartError.emptyCart
 }
 // Continue with the checkout
 }
}

If you take a closer look at the addItem method, you probably notice the throws keyword. We
append the throws keyword in the method declaration to indicate that the method can throw
an error. In the implementation, we use guard to ensure the total number of items is less than
5. Otherwise, we throw the ShoppingCartError.cartIsFull error.

To throw an error, you just write the throw keyword, followed by the actual error. For the
checkout method, we have a similar implementation. If the cart does not contain any items, we
throw the ShoppingCartError.emptyCart error.

Now, let's see what happens when performing a checkout on an empty cart. I recommend you
to fire up Xcode and use Playgrounds to test out the code.

let shoppingCart = LiteShoppingCart()
do {
 try shoppingCart.checkout()
 print("Successfully checked out the items!")
} catch ShoppingCartError.cartIsFull {
 print("Couldn't add new items because the cart is full")
} catch ShoppingCartError.emptyCart {
 print("The shopping cart is empty!")
} catch {
 print(error)
}

As the checkout method can throw an error, we use the do-catch statement to catch the
errors. If you execute the above code in Playgrounds, it will catch the
 ShoppingCartError.emptyCart error and print the error message accordingly, because we
haven't added any items.

Now insert the following code in the do clause, right before calling the checkout method:

try shoppingCart.addItem(item: Item(price: 100.0, name: "Product #1"))
try shoppingCart.addItem(item: Item(price: 100.0, name: "Product #2"))
try shoppingCart.addItem(item: Item(price: 100.0, name: "Product #3"))

608

try shoppingCart.addItem(item: Item(price: 100.0, name: "Product #4"))
try shoppingCart.addItem(item: Item(price: 100.0, name: "Product #5"))
try shoppingCart.addItem(item: Item(price: 100.0, name: "Product #6"))

Here we try to add a total of 6 items to the shoppingCart object. Again, it will throw an error
because the shopping cart cannot hold more than 5 items.

When catching errors, you can identify the exact error (e.g. ShoppingCartError.cartIsFull) to
match, so you can provide very specific error handling.

If you do not specify a pattern in the catch clause, Swift will match any error and
automatically bind the error to the error constant. As a best practice, you should try to catch
the specific errors that are thrown by the throwing method. At the same time, you should write
a catch clause that matches any errors. This ensures all possible errors are handled.

If all users are forced to upgrade to the latest version of iOS, this would make our developers’
life much easier. In reality, however, your apps have to cater for different versions of iOS (e.g.
iOS 8, 9 and iOS 10). If you just use the latest version of APIs in your app, this may cause
errors when the app runs on older versions of iOS. When using an API that is only available on
the latest version of iOS, you will need to do some kinds of verification before using the class or
calling the method.

Prior to Swift 2, there is no standard way to do availability check. As an example, the
 UNMutableNotificationContent class is only available on iOS 10. If you use the class on older
versions of iOS, you’ll end up with an error and that probably causes an app crash. To prevent
the error, you may perform the availability check like this:

if (NSClassFromString("UNMutableNotificationContent") != nil) {

} else {

}

This is one way to check if the class exists. Starting from Swift 2, it has built-in support for
checking API availability. You can easily define an availability condition so that the block of

Availability Checking

609

code will only be executed on certain iOS versions. Here is an example:

if #available(iOS 10.0, *) {
 // iOS 10 or up
 let content = UNMutableNotificationContent()
} else {
 // Fallback on earlier versions
}

You use the #available keyword in a if statement. In the availability condition, you specify
the OS versions (e.g. iOS 10) you want to verify. The * is required and indicates that the if
clause is executed on the minimum deployment target and any other versions of OS. For the
above example, the body of the if will be executed on iOS 10 or up, and other platforms such
as watchOS.

Similarly, you can use guard instead of if for checking API availability. Here is another
example:

guard #available(iOS 10.0, *) else {
 // what to do if it doesn't meet the minimum OS requirement
 return
}

let content = UNMutableNotificationContent()

What if you want to develop a class or method, which is available to certain versions of OS?
Swift lets you apply the @available attribute on classes/methods/functions to specify the
platform and OS version you want to target. Say, for example, you’re developing a class named
 SuperFancy and it is only available for iOS 10 or later. You can apply @available like this:

@available(iOS 10.0, *)
class SuperFancy {
 // implementation
}

If you try to use the class on Xcode projects that supports multiple versions of iOS, Xcode will
show you the errors below:

610

Note: You cannot test availability check in Playgrounds. If you want to give it
a try, create a new Xcode project to test out the feature.

611

	Preface
	Getting Started with Xcode 8 Development
	Swift Playgrounds
	Build Your First App
	Hello World App Explained
	Introduction to Auto Layout
	Designing UI Using Stack Views
	Introduction to Prototyping
	Creating a Simple Table-based App
	Customize Table Views Using Prototype Cell
	Interacting with Table View and Using UIAlertController
	Table Row Deletion, Custom Action Button and MVC
	Introduction to Navigation Controller and Segue
	Introduction to Object-Oriented Programming
	Detail View Enhancement and Navigation Bar Customization
	Self Sizing Cells and Dynamic Type
	Basic Animations, Visual Effects and Unwind Segues
	Working with Maps
	Introduction to Static Table Views, UIImagePickerController and NSLayoutConstraint
	Working with Core Data
	Search Bar and UISearchController
	Building Walkthrough Screens with UIPageViewController
	Exploring Tab Bars and Storyboard References
	Getting Started with WKWebView and SFSafariViewController
	Exploring CloudKit
	Localizing Your App to Reach More Users
	Deploying and Testing Your App on a Real iOS Device
	Beta Testing with TestFlight
	Submitting Your App to App Store
	Adopting 3D Touch
	Developing User Notifications in iOS 10
	Appendix - Swift Basics

